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Abstract

This  study  investigates  the  relationship  between  computational  thinking  (CT)  dimensions  and  
achievement  in  robotics  programming among computer  education students  in  Southeast  Nigeria.  A 
correlational  research design was adopted,  and data  were collected from 105 students  and analysed  
using  Pearson  correlation  and  multiple  regression  techniques.  The  results  show  that  algorithmic 
thinking exhibits the strongest positive correlation with achievement (r = .596,  p < .001), followed by 
evaluation (r = .449, p < .001), generalisation (r = .416, p < .001), and abstraction (r = .374, p < .001). 
However,  decomposition  negatively  correlated  with  achievement  (r =  −.392,  p  <  .001),  indicating 
difficulties in effectively applying decomposition skills to robotics programming tasks. Collectively, the  
five CT dimensions significantly predict students’ achievement, accounting for 74.5% of  the variance  
(r² = .745, F(5,99) = 57.845, p < .001). Regression analysis further identifies algorithmic thinking as the 
strongest  positive  predictor (β = 1.116,  p < .001),  while  decomposition (β = −.630,  p < .001)  and 
evaluation (β = −.449, p < .001) negatively impact achievement. Additionally, students’ self-perceptions  
of  their CT abilities generally align with their performance, except for decomposition, where a negative  
relationship suggests  potential  gaps in skill  application.  These results  underscore the critical  role of  
algorithmic thinking in robotics programming success and suggest the need for targeted interventions  
to address challenges associated with decomposition and evaluation skills.  The study offers valuable  
insights for educators and curriculum developers aiming to enhance computational thinking instruction  
in robotics education.
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1. Introduction
There is a silent revolution going on in the busy classrooms of  Southeast Nigeria.  Students used to just 
learn in traditional ways, but today they are learning about robotics programming, which is a fast-paced 
field.  This  shift  is  not  just  about  learning  to  code;  it’s  about  fostering  a  new  way  of  thinking, 
computational thinking (CT). As these students navigate the complexities of  programming robots, they 
are developing skills that extend far beyond the classroom, preparing them for a future where technology 
and innovation are paramount.

Computational Thinking (CT), a term popularised by Jeannette Wing in 2006, refers to a problem-solving 
process that includes a number of  characteristics, such as logically organising and analysing data, breaking 
down complex problems into manageable parts, and creating algorithms to solve these problems (Palop, 
Díaz,  Rodríguez-Muñiz  &  Santaengracia,  2025;  Wing,  2006).  CT  is  increasingly  recognised  as  a 
fundamental skill for all students, not just those pursuing careers in computer science (Acevedo-Borrega,  
Valverde-Berrocoso & Garrido-Arroyo, 2022; Grover & Pea, 2013). It encompasses a range of  cognitive 
skills  and  processes,  including  abstraction,  algorithmic  thinking,  decomposition,  evaluation  and 
generalisation (Rao & Bhagat,  2024).   Abstraction in computational  thinking refers to the process of 
filtering out unnecessary details and focusing on essential features of  a problem to develop a general  
solution  (Wing,  2006).  This  skill  is  fundamental  in  programming  and robotics,  where  students  must 
identify key components and relationships while ignoring extraneous elements. Recent studies highlight 
the importance of  abstraction in problem-solving, particularly in robotics, artificial intelligence (AI) and 
data science applications (Gizzi, Nair, Chernova & Sinapov, 2022; Grover & Pea, 2018). However, despite  
its  significance,  many  students  struggle  with  abstraction  due  to  difficulties  in  distinguishing  between 
relevant and irrelevant details (Shute, Sun & Asbell-Clarke, 2017). There is a need for more instructional 
strategies that  explicitly teach abstraction skills,  particularly through hands-on activities and real-world 
applications in robotics programming.

Decomposition,  on  the  other  hand,  involves  breaking  down  complex  problems  into  smaller,  more 
manageable  sub-problems,  making  them easier  to  analyse  and  solve  (Selby  & Woollard,  2014).  This 
approach is widely used in computational problem-solving, software engineering, and robotics (Brennan & 
Resnick,  2012).  Research has  shown that  effective  decomposition enhances  students’  ability  to  tackle 
large-scale problems systematically (Waite, Curzon, Marsh & Sentance, 2020). However, there is a paucity 
of  studies on the correlation between decomposition and achievement in robotics programming. Since 
developing decomposition skills in programming is often not easy (Kwon & Cheon, 2019), students may  
struggle with correctly structuring sub-problems. This suggests that further research into instructional 
strategies is necessary to help students develop efficient decomposition skills while ensuring that breaking 
down problems does not interfere with overall problem comprehension and achievement. Algorithmic 
thinking refers to the ability to design and apply step-by-step procedures to solve problems efficiently  
(Denning, 2009). It is a fundamental component of  computational thinking and is particularly essential in 
robotics programming, where students must develop precise sequences of  instructions for their robots to 
execute (Grover & Pea, 2018). Research has consistently shown that strong algorithmic thinking skills lead 
to improved programming performance (Csizmadia, Standl & Waite, 2019). However, many students still 
struggle  with  creating  optimised and error-free  algorithms (Sabuncuoglu  & Sezgin,  2022),  which can 
hinder their success in programming. While existing studies emphasise the importance of  algorithmic 
thinking, there is still a paucity of  research on the relationship between algorithmic thinking and students’  
achievement in robotics education.

Evaluation in computational thinking involves assessing the effectiveness and efficiency of  solutions,  
debugging errors,  and refining algorithms to  improve performance (Shute et  al.,  2017).  In robotics  
programming,  students  must  analyse  their  code  and  test  their  robots  to  determine  whether  their  
solutions meet the desired objectives. Studies indicate that students who engage in frequent evaluation  
processes  tend  to  develop stronger  problem-solving  and debugging  skills  (Chuang  & Chang,  2024;  
Brennan & Resnick, 2012). Generalisation refers to the ability to apply previously learned concepts and  
solutions  to  new problems,  thereby  enhancing problem-solving  efficiency  and adaptability  (Selby  & 
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Woollard,  2014).  In  robotics  programming,  students  must  recognise  patterns  and  transfer  coding  
principles  across  different  tasks.  Research  has  shown  that  generalisation  enhances  computational  
fluency and fosters creative problem-solving (Aranda & Ferguson, 2022; Waite et al., 2020). Yet, few  
studies  have  investigated  the  relationship  between  generalisation  and  achievement  in  robotics  
programming.

Robotics programming involves designing, writing, and testing code that controls robots. This field has  
gained significant traction in educational settings due to its hands-on nature and its  ability to make  
abstract concepts tangible (Talan, 2021). Research has shown that robotics programming can enhance  
students’ engagement, motivation, and understanding of  complex STEM concepts (Kert, Erkoç & Yeni, 
2020).  Moreover,  it  provides  a  practical  context  for  applying  computational  thinking  skills,  thereby  
reinforcing and deepening students’ understanding (Noh & Lee, 2020; Yıldız & Seferoğlu, 2021).

Despite the growing body of  research on computational thinking (CT) and robotics programming, there 
are still some big gaps.  A significant portion of  the literature comes from Western contexts, with little  
focus on African settings, especially Nigeria and Southeast Nigeria (Rovshenov & Sarsar, 2023).  Recent  
regional  initiatives  have  commenced  efforts  to  rectify  this  deficiency,  with  few studies illustrating  the 
capacity  of  educational  robots  to  improve students’  programming achievement,  task persistence,  and 
computational  thinking  (Nannim,  Ibezim,  Mosia  &  Oguguo,  2025;  Nannim,  Ibezim,  Oguguo  & 
Nwangwu, 2024).  Others have investigated alternative ways, including unplugged methods, to facilitate 
the  computational  thinking  of  novice  learners  (Agbo,  Okpanachi,  Ocheja,  Oyelere  &  Sani,  2024). 
Nonetheless,  research into the particular aspects of  computational thinking most affected by robotics 
programming is  still  very  scarce,  highlighting  the  necessity  for  contextualised  research  that  enhances 
comprehension of  how robotics might facilitate computational thinking in African educational settings 
(Rao & Bhagat, 2024). Furthermore, there is a lack of  correlational studies examining the impact of  the 
dimension of  CT on students’ academic achievement in robotics programming. Therefore, this study aims 
to  address  the  lack  of  comprehensive  research  on  the  relationship  between  computational  thinking 
dimensions and achievement in robotics programming among computer education students in Southeast 
Nigeria.  By exploring  this  relationship,  the  study seeks  to fill  the existing  research gaps and provide  
insights that can inform educational practices and policies in the region. The following research questions 
were raised to guide the study:

1. What  is  the  relationship  between  each  dimension  of  computational  thinking  (abstraction, 
decomposition, algorithmic thinking, evaluation, and generalisation) and achievement in robotics 
programming among computer education students in Southeast Nigeria?

2. How do the dimensions of  computational thinking collectively predict achievement in robotics 
programming among computer education students?

3. Which dimension of  computational thinking is the strongest predictor of  achievement in robotics 
programming among computer education students?

4. How do students’ perceptions of  their computational thinking abilities correlate with their actual 
performance in robotics programming?

1.1. Theoretical Framework
1.1.1. Constructionism Theory

Constructionism, developed by Seymour Papert, is a learning theory that emphasises the importance of  
learners actively constructing their own knowledge through hands-on, meaningful activities. This theory 
builds on Jean Piaget’s constructivist ideas, suggesting that knowledge is best acquired when learners are  
engaged in creating tangible artefacts that reflect their understanding. Constructionism posits that learners  
construct knowledge most effectively when they are involved in creating something meaningful (Papert,  
1980, 1993). This making process allows learners to experiment, iterate, and refine their understanding.  
The theory advocates for project-based learning, where students work on projects that are personally 
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meaningful and relevant. This approach encourages deep engagement and sustained interest. Additionally, 
constructionism emphasises the social nature of  learning. Collaboration with peers provides opportunities 
for learners to share ideas, receive feedback, and build on each other’s knowledge. Reflection is also a  
critical component of  constructionism. Learners are encouraged to think about their learning process,  
evaluate their progress, and make adjustments as needed.

In  the  context  of  this  study,  constructionism  provides  a  robust  framework  for  understanding  how 
computer education students in Southeast Nigeria develop computational thinking skills through robotics 
programming.  The  hands-on,  project-based  nature  of  robotics  programming  aligns  well  with  the 
principles of  constructionism, as students actively engage in creating and programming robots, which 
reinforces their computational thinking skills. As students engage in robotics programming, they construct 
knowledge  by  building  and  programming  robots.  This  hands-on  activity  allows  them  to  apply 
computational thinking skills such as abstraction, decomposition, and algorithmic thinking in a practical 
context. For example, when students program a robot to navigate a maze, they must break down the 
problem  into  smaller  tasks,  develop  algorithms,  and  test  their  solutions,  thereby  reinforcing  their  
understanding of  computational concepts.

The  8-week  robotics  programming  course  is  structured  around  projects  that  are  meaningful  and  
relevant to the students.  These projects provide a context for students to apply their computational  
thinking skills in a sustained and engaging manner. For instance, students might work on projects such  
as  designing a  robot  to perform specific  tasks,  which requires  them to apply  and integrate  various  
computational thinking dimensions. Robotics programming often involves teamwork, where students  
collaborate to solve problems and build robots. This collaborative environment fosters the sharing of  
ideas,  peer learning,  and collective problem-solving. Through collaboration,  students can learn from  
each other’s experiences, receive feedback, and refine their computational thinking skills. Throughout  
the robotics programming course, students are encouraged to reflect on their learning process, evaluate  
their progress, and make adjustments as needed. This reflective practice helps students to internalise  
their learning, identify areas for improvement, and develop a deeper understanding of  computational  
thinking.

By  grounding  this  study  in  the  Constructionism Theory,  the  researcher  can  explore  how the  active,  
project-based,  and  collaborative  nature  of  robotics  programming  influences  the  development  of 
computational thinking skills among computer education students. This theoretical framework not only 
provides a basis for understanding the learning process but also highlights the importance of  hands-on, 
meaningful activities in achieving educational outcomes

2. Methodology
2.1. Research Design

This study adopts a correlational research design to investigate the relationship between the dimensions of 
computational thinking and achievement in robotics programming among computer education students. 
The correlational research design is a type of  non-experimental research method used to measure the 
relationship  between  two  or  more  variables  without  manipulating  them (Hassan,  2024).  This  design 
involves  collecting  data  on the variables  of  interest  and using  statistical  techniques  to determine the  
strength and direction of  the relationships between them. The design is appropriate for this study because 
it  effectively addresses the research objectives of  exploring and quantifying the relationships between 
computational  thinking  dimensions  and  achievement  in  robotics  programming,  without  the  need  for 
experimental manipulation.

2.2. Participants

The participants of  the study were computer education students from universities and degree-awarding 
institutions  in  southeast  Nigeria  who had  undergone  an  8-week  robotics  programming  course  using 
Arduino  (CRE  252  –  Robotics  Programming  II).  The  population  comprise  year-two  computer  and 
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robotics  education students  from the  University  of  Nigeria,  Nsukka,  Enugu State  (36),  Alvan Ikoku 
Federal  University  of  Education,  Owerri,  Imo  State  (41)  and  Nwafor  Orizu  College  of  Education,  
Nsugbe, Anambra State (28). Three intact classes of  105 students were purposively selected based on their 
enrolment in the course..

2.3. Instruments for Data Collection

Two  instruments  were  used  for  data  collection  thus:  the  Computational  Thinking  Assessment 
Questionnaire  (CTAQ)  and  the  Robotics  Programming  Achievement  Test  (RPAT).  The  CTAQ  was 
adapted  from (Tsai,  Liang  &  Hsu,  2021).  It  was  a  19-item  instrument  developed  to  assess  the 
computational  thinking  abilities  of  students  across  five  dimensions:  abstraction,  decomposition, 
algorithmic  thinking,  evaluation,  and  generalisation.  The  CTAQ was  rated  on  a  5-point  Likert  scale 
ranging from 1=Not Agree at All, 2=Not Agree, 3=Undecided, 4=Agree, to 5=Totally Agree. The initial 
instrument has a reliability index of  0.91, while the adapted version yields a Cronbach’s alpha coefficient 
of  0.87  through  trial  testing.  The  RPAT  measured  students’  achievement  in  the  8-week  robotics 
programming  course.  It  comprised  25  multiple-choice  questions  on  Arduino  programming  concepts,  
problem-solving, and implementation. The validity of  the RPAT was ensured through expert review, and 
its reliability was confirmed with a Kuder-Richardson formula 20 (KR-20) coefficient of  0.82.  A test  
blueprint (Table of  Specifications) guided the construction of  the items on RPAT.

2.4. Procedure

The  study  was  conducted  over  10  weeks.  The  first  8  weeks  were  dedicated  to  teaching  robotics  
programming with Arduino,  during  which students  were  engaged in  hands-on activities  and guided  
practice sessions. At the end of  the course, the CTAQ and RPAT were administered to the students.  
Data  collection  was  supervised  by  the  researcher  and  trained  assistants  to  ensure  accuracy  and 
consistency.

2.5. Data Analysis

The collected data were analysed using Pearson’s Moment correlation coefficient (PPMC) to determine  
the  relationships  between  each  computational  thinking  dimension  and  achievement  in  robotics  
programming. Multiple regression analysis was employed to assess the extent to which the dimensions  
of  computational thinking collectively predicted students’ achievement. For decision-making, a value  
close  to  1  indicates  a  strong  positive  correlation,  a  value  close  to  -1  indicates  a  strong  negative  
correlation and a value close to 0 indicates no correlation. The correlation is statistically significant if  
p < 0.05.

3. Results
3.1. Research Question One

What is the relationship between each dimension of  computational thinking (abstraction, decomposition, 
algorithmic thinking, evaluation, and generalisation) and achievement in robotics programming among 
computer education students in Southeast Nigeria?

The  correlation  matrix  in  Table  1  shows  the  relationships  between  computational  thinking  (CT) 
dimensions and achievement. It was found that Algorithmic Thinking has a strong positive correlation 
with achievement (r = .596, p < .001), suggesting that students who excel in algorithmic thinking tend to 
achieve higher in robotics programming. Evaluation also shows a significant positive correlation (r = .449, 
p < .001). Abstraction (r = .374, p < .001) and Generalization (r = .416, p < .001) have moderate positive 
correlations  with  achievement.  Decomposition,  however,  has  a  negative  correlation with  achievement 
(r = −.392, p<.001), implying that higher decomposition skills may be associated with lower achievement 
in robotics programming. These findings indicate that most dimensions of  computational thinking have a 
positive  influence  on  achievement,  except  for  decomposition,  which  appears  to  have  an  inverse 
relationship.

-99-



Journal of  Technology and Science Education – https://doi.org/10.3926/jotse.3402

Test Dimension A
ch

ie
ve

m
en

t

A
bs

tr
ac

ti
on

D
ec

om
po

si
ti

on

A
lg

or
it

hm
ic

 
th

in
ki

ng

E
va

lu
at

io
n

G
en

er
al

is
at

io
n

Pearson 
Correlation

Achievement 1.000 .374 -.392 .596 .449 .416

Abstraction .374 1.000 .165 .508 .591 .380

Decomposition -.392 .165 1.000 .253 .177 .016

Algorithmic Thinking .596 .508 .253 1.000 .867 .716

Evaluation .449 .591 .177 .867 1.000 .758

Generalisation .416 .380 .016 .716 .758 1.000

Sig. (1-tailed)

Achievement . <.001 <.001 <.001 <.001 <.001

Abstraction .000 . .047 .000 .000 .000

Decomposition .000 .047 . .005 .036 .435

Algorithmic Thinking .000 .000 .005 . .000 .000

Evaluation .000 .000 .036 .000 . .000

Generalisation .000 .000 .435 .000 .000 .

Table 1. Correlation Matrix of  the Relationship Between Dimensions of  Computational Thinking 
and Achievement in Robotics Programming (Number of  Respondents [N] = 105)

3.2. Research Question Two

How  do  the  dimensions  of  computational  thinking  collectively  predict  achievement  in  robotics 
programming among computer education students?

Model r
r 

square
Adjusted r 

square
Std. error of 
the estimate

Change statistics

r square change f  change df1 df2 Sig. f  change

1 .863a .745 .732 8.43863 .745 57.845 5 99 <.001

a. Predictors: (Constant), Generalisation, Decomposition, Abstraction, Algorithmic Thinking, Evaluation

Table 2. Model Summary on How the Dimensions of  Computational Thinking 
Collectively Predict Achievement in Robotics Programming

Model Sum of  squares df Mean square f Sig.

1

Regression 20595.728 5 4119.146 57.845 <.001b

Residual 7049.834 99 71.210

Total 27645.562 104

a. Dependent Variable: Achievement
b. Predictors: (Constant), Generalisation, Decomposition, Abstraction, Algorithmic Thinking, Evaluation

Table 3. Analysis of  Variance (ANOVA) on How the Dimensions of  Computational 
Thinking Collectively Predict Achievement in Robotics Programming

The  model  summary  in  Table  2  and  the  ANOVA  in  Table  3  show  that  the  five  dimensions  of 
computational thinking collectively explain 74.5% of  the variance in students’ achievement (r2 = .745). 
which is statistically significant (F(5.99)=57.845, p < .001).  This indicates that computational thinking 
dimensions. when considered together, are strong predictors of  robotics programming achievement. The 
standard error of  the estimate (8.439) suggests a relatively good fit of  the model.

3.3. Research Question Three

Which  dimension  of  computational  thinking  is  the  strongest  predictor  of  achievement  in  robotics 
programming among computer education students?
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Model

Unstandardized 
Coefficients Standardized Coefficients

t Sig.B Std. Error Beta

1

(Constant) 114.593 9.204 12.450 <.001

Abstraction 3.836 1.110 .220 3.457 <.001

Decomposition -22.573 1.941 -.630 -11.627 <.001

Algorithmic Thinking 20.332 1.943 1.116 10.467 <.001

Evaluation -9.565 2.536 -.449 -3.772 <.001

Generalisation -2.345 1.658 -.116 -1.415 .160

Table 4. Summary of  Coefficients of  Regression on Which Dimension of  Computational 
Thinking is the Strongest Predictor of  Achievement in Robotics Programming

Table 4 shows the standardised beta coefficients in the regression output to help identify the strongest 
predictor of  achievement in robotics programming among computer education students. It was found 
that Algorithmic Thinking has the highest positive standardised beta coefficient (β = 1.116, p < .001), 
indicating  that  it  is  the  strongest  predictor  of  achievement.  Abstraction  is  also  a  significant  positive 
predictor (β =.220,p < .001). Evaluation has a significant negative effect (β = −.449, p < .001), suggesting 
that higher evaluation skills might unexpectedly contribute to lower achievement. Decomposition shows a 
strong  negative  impact  on  achievement  (β  =  −.630,  p  <  .001),  reinforcing  its  negative  correlation.  
Generalisation is not a significant predictor (p=.160), meaning its contribution to achievement is minimal. 
Overall,  Algorithmic  Thinking  emerges  as  the  most  potent  positive  predictor,  while  Decomposition 
negatively impacts achievement.

3.4. Research Question Four

How  do  students’  perceptions  of  their  computational  thinking  abilities  correlate  with  their  actual 
performance in robotics programming?

To answer this research question, the results in Table 1 were carefully explored. The results suggest that 
students’  self-perceptions  of  their  computational  thinking  skills  (as  indicated  by  abstraction, 
decomposition,  algorithmic  thinking,  evaluation,  and  generalisation)  correlate  with  their  actual 
performance  in  varying  degrees:  Positive  correlations  with  achievement  suggest  that  students  who 
perceive themselves as proficient in algorithmic thinking, evaluation, abstraction, and generalisation tend 
to perform well in robotics programming. However, the negative correlation between decomposition and 
achievement (r = −.392, p < .001) suggests that students who believe they are good at decomposition may 
not necessarily achieve high scores, or they may struggle to apply decomposition effectively in robotics 
programming.  These  findings  indicate  that  while  most  self-perceived  CT  skills  align  with  actual 
performance,  decomposition stands out  as  an area  where perceptions and performance do not  align 
positively.

4. Discussions
In this section, we discussed the findings of  this study by suggesting plausible reasons for the findings and 
comparing these findings with existing literature.

4.1. Relationship Between Dimensions of  Computational Thinking and Achievement in Robotics 
Programming

The  results  in  Table  1  show  that  algorithmic  thinking  has  the  strongest  positive  correlation  with 
achievement in robotics programming. This suggests that students who excel in algorithmic thinking tend 
to perform better in robotics programming. A reasonable explanation for this finding is that algorithmic  
thinking allows students to break problems down into logical steps, come up with efficient solutions, and 
write code to implement them, which are all important skills for programming robots. This aligns with 
existing literature,  as studies by Román-González,  Pérez-González and Jiménez-Fernández (2017) and 
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Grover  and  Pea  (2018)  have  also  identified  algorithmic  thinking  as  a  strong  predictor  of  success  in 
programming-related tasks.  Since robotics  programming requires  iterative problem-solving,  debugging, 
and optimisation, students with strong algorithmic thinking skills will likely adapt more effectively and 
achieve higher outcomes.

Similarly,  evaluation shows a significant positive correlation with achievement,  indicating that students 
who  can  assess  and  refine  their  work  effectively  tend  to  perform  better.  This  is  not  surprising,  as 
evaluation skills  are  essential  for  debugging,  testing,  and improving  program efficiency.  Brennan and 
Resnick  (2012)  emphasised  that  evaluation  plays  a  key  role  in  computational  thinking,  as  it  enables 
students to recognise errors and optimise their solutions. Shute et al. (2017) also highlighted evaluation as 
a crucial skill in computational problem-solving, reinforcing its importance in robotics programming. The 
study  further  found  that  abstraction  and  generalisation  have  moderate  positive  correlations  with 
achievement.  Abstraction  allows  students  to  focus  on  essential  details  while  ignoring  irrelevant 
complexities, which is particularly beneficial in structuring and modularising code. Generalisation, on the 
other hand, enables students to recognise patterns and apply learned problem-solving approaches to new 
challenges. Research by Lye and Koh (2014) and Weintrop,  Beheshti, Horn, Orton, Jona, Trouille et al. 
(2016)  has  similarly  indicated  that  students  with  strong  abstraction  and  generalisation  skills  tend  to 
perform well in programming tasks, as these skills support adaptive thinking and code reusability.

However, an unexpected finding was the negative correlation between decomposition and achievement. 
Decomposition, which involves breaking a problem into smaller, manageable sub-problems, is typically 
considered a fundamental computational thinking skill. However, in this study, higher decomposition skills 
were  associated  with  lower  achievement  in  robotics  programming.  One  plausible  explanation  is  that 
excessive focus on decomposition may lead to difficulty in integrating the smaller components into a 
coherent  whole.  When  students  decompose  problems  too  rigidly,  they  might  struggle  to  synthesise 
solutions efficiently, leading to fragmented or overly complex code structures. Grover and Pea (2018) also 
observed that novice programmers sometimes face challenges in applying decomposition effectively, as 
they may overcomplicate problems rather than simplifying them. Lye and Koh (2014) further noted that 
while decomposition is  beneficial,  its  effectiveness depends on the student’s ability to reconstruct the 
broken-down components into a functional solution.

Therefore, these findings align with previous research that emphasises algorithmic thinking as the most 
critical computational thinking skill for programming success (Román-González et al., 2017; Grover & 
Pea,  2018).  The positive  influence of  evaluation,  abstraction,  and generalisation is  also supported by 
existing  literature  (Weintrop  et  al.,  2016;  Shute  et  al.,  2017).  However,  the  negative  correlation  of 
decomposition contrasts with conventional computational thinking models (Brennan & Resnick, 2012; 
Lye & Koh, 2014), suggesting that decomposition may not always be beneficial, particularly if  students  
struggle to integrate fragmented components into a complete program.

4.2.  How  the  Dimensions  of  Computational  Thinking  Collectively  Predict  Achievement  in 
Robotics Programming

The results in Tables 2 and 3 show that the five dimensions of  computational thinking such as abstraction, 
decomposition,  algorithmic  thinking,  evaluation,  and  generalisation,  collectively  explain  74.5% of  the 
variance in students’ achievement in robotics programming. This indicates that computational thinking 
strongly  predicts  success  in  robotics  programming.  The relatively  low standard error  of  the  estimate 
further  suggests  that  the  model  fits  the  data  well,  meaning  that  these  dimensions,  when  considered 
together,  effectively  predict  students’  achievement.  One  plausible  explanation  for  this  finding  is  that 
robotics  programming  inherently  requires  the  simultaneous  application  of  multiple  computational 
thinking  skills.  Students  must  abstract  key  problem  components,  decompose  complex  tasks  into 
manageable parts, apply algorithmic thinking to structure logical sequences, use evaluation to debug and 
optimise solutions, and leverage generalisation to apply learned concepts across different problems. This  
interconnectedness among the CT dimensions likely contributes to the strong predictive power observed 
in the study. Another reason for the high variance explained by computational thinking could be that CT 
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skills collectively enhance cognitive flexibility, a crucial trait in programming. Algorithmic thinking and 
evaluation,  for  instance,  work  together  to  refine  problem-solving  strategies,  while  abstraction  and 
decomposition help simplify intricate coding challenges. When students develop these skills holistically,  
they become more adept at approaching, analysing, and solving robotics programming tasks efficiently, 
leading to higher achievement levels.

These findings align with previous research emphasising the integral role of  computational thinking in 
programming success. Román-González et al. (2017) found that computational thinking skills explain a 
significant  portion of  students’  programming proficiency,  particularly  when these skills  are developed 
collectively. Similarly, Weintrop et al. (2016) highlighted how students with well-developed computational 
thinking abilities tend to navigate complex coding challenges more effectively, reinforcing the idea that CT 
is  a  crucial  determinant  of  programming  achievement.  Grover  and  Pea  (2018)  further  argue  that 
computational thinking should be viewed as a cognitive framework rather than a set of  isolated skills.  
Grover  and  Pea  emphasise  that  students  who  develop  computational  thinking  holistically  are  better 
equipped  to  tackle  programming  challenges,  debug  code,  and  optimise  solutions.  This  perspective 
supports the current study’s findings that CT dimensions, when considered together, provide a strong 
predictive model for robotics programming success.

However,  some studies  suggest  that  the  predictive  power  of  computational  thinking  skills  may  vary 
depending on instructional methods, prior knowledge, and motivation. Lye and Koh (2014) found that 
while CT significantly influences programming performance, its effectiveness is sometimes moderated by 
students’ prior experience and the nature of  the programming tasks. This implies that while computational 
thinking is a key predictor, other factors such as teaching approaches, student engagement, and external  
support systems may also shape students’ achievement in robotics programming. While the current study 
finds that CT dimensions collectively explain 74.5% of  the variance in achievement, other researchers 
argue that non-cognitive factors should not be overlooked (Shute et al., 2017). Shute et al. highlighted the 
role of  self-efficacy, motivation, and collaboration in shaping programming success. These factors, though 
not explicitly included in the current model,  may contribute to the remaining unexplained variance in 
students’ robotics programming achievement.

4.3.  The  Dimension  of  Computational  Thinking  Which  is  The  Strongest  Predictor  of 
Achievement in Robotics Programming Among Computer Education Students

The  results  of  this  study  in  Table  4  show  that  algorithmic  thinking  is  the  strongest  predictor  of  
achievement  in  robotics  programming,  while  decomposition  and  evaluation  have  significant  negative 
effects. Abstraction is also a significant positive predictor, whereas generalisation does not significantly 
predict achievement. The dominance of  algorithmic thinking as the strongest predictor of  achievement 
can  be  explained  by  its  direct  relevance  to  programming  logic  and  problem-solving.  Robotics 
programming requires students to construct logical sequences of  instructions that a robot can execute  
efficiently. Students with strong algorithmic thinking skills are better equipped to develop structured and 
efficient  solutions,  leading  to  improved  performance.  This  finding  is  consistent  with  Wing’s  (2006) 
assertion that algorithmic thinking is a fundamental skill in computational problem-solving, as it enables  
individuals to break down problems into a sequence of  well-defined steps.

Also, the positive predictive power of  abstraction can be attributed to its role in simplifying complex 
problems and focusing on essential  details.  In robotics  programming,  students must manage multiple 
components, including sensor inputs, control logic, and sequential execution of  tasks. Those proficient in 
abstraction can efficiently filter out irrelevant details and concentrate on the core structure of  a problem, 
enhancing their ability to design effective programs. This aligns with Brennan and Resnick’s (2012) study, 
which  highlights  abstraction  as  a  key  computational  thinking  skill  that  enables  students  to  handle 
complexity  and  design  robust  programming  solutions.  On  the  other  hand,  the  negative  impact  of 
decomposition on achievement is unexpected but may suggest that students struggle with reintegrating 
decomposed components into a cohesive whole. While decomposition is generally considered a beneficial 
computational thinking skill, its effectiveness depends on how well students can reassemble broken-down 
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problems into functional solutions. If  students focus too much on breaking down a problem without  
successfully synthesising the components,  they may experience difficulty in structuring their programs 
efficiently. Grover and Pea (2018) similarly note that while decomposition is useful for problem-solving, 
improper or excessive decomposition without reintegration can lead to cognitive overload and inefficient  
programming.

Furthermore,  the  negative  relationship  between  evaluation  and  achievement  may  stem  from  the  
possibility that students who spend excessive time debugging or overanalysing their code struggle to  
complete their programming tasks efficiently. Evaluation is crucial for identifying errors and optimising  
code, but if  students become overly focused on debugging without confidence in their corrections, they  
may become trapped in iterative cycles of  problem identification and revision. This finding resonates  
with Shute et al. (2017), who emphasise that students who lack structured debugging strategies often  
experience  frustration,  leading  to  lower  overall  performance  in  programming  tasks.  While  
generalisation’s  non-significant  contribution  to  achievement  (p  =  .160)  suggests  that  transferable  
problem-solving skills may not directly impact robotics programming performance. Generalisation is an  
essential computational thinking skill that allows students to apply previously learned knowledge to new 
problems.  However,  robotics  programming  often  involves  highly  specific,  context-dependent  
problem-solving approaches, where generalised knowledge may not always be applicable. This finding is  
consistent  with  Weintrop  et  al.  (2016),  who  argue  that  while  generalisation  is  an  important  
computational  thinking  skill,  its  impact  varies  depending  on  the  similarity  between  previously  
encountered problems and new tasks.

The strong predictive power of  algorithmic thinking aligns with several studies that emphasise its role in 
programming  success.  For  instance,  Román-González  et  al.  (2017)  found  that  students  with  strong 
algorithmic thinking abilities consistently outperform their peers in programming tasks, reinforcing the 
notion that algorithmic thinking is essential for effective coding. Similarly, Lye and Koh (2014) highlight 
algorithmic thinking as the backbone of  programming education, as it enables students to break problems 
into logical sequences and implement solutions systematically. However, the negative relationship between 
decomposition  and  achievement  disagrees  with  some  studies  that  view  decomposition  as  a  critical  
computational thinking skill. Brennan and Resnick (2012), for example, emphasise decomposition as an 
essential process in programming. However, this study’s findings suggest that if  students focus too much 
on breaking down a problem without properly integrating the components, they may struggle with task 
completion. Grover and Pea (2018) caution that decomposition can be counterproductive if  students are 
not guided on how to synthesise decomposed parts into complete solutions, which supports the current 
study’s findings. The unexpected negative impact of  evaluation also contrasts with studies that highlight its 
role in debugging and code refinement (Shute et al., 2017). However, it aligns with research suggesting 
that students who struggle with debugging may experience frustration, leading to decreased motivation 
and lower achievement (Lye & Koh, 2014). If  students lack strategic approaches to debugging, evaluation 
may  become  a  time-consuming,  trial-and-error  process  rather  than  a  structured  skill  that  enhances 
performance.

4.4. How Students’ Perception of  their Computational Thinking Abilities Correlates with their 
Actual Achievement in Robotics Programming

Results from Table 1 suggest that students’ self-perceptions of  their computational thinking (CT) abilities  
generally align with their actual performance in robotics programming, except for decomposition, which 
exhibits a negative correlation with achievement. Specifically, students who believe they are proficient in 
algorithmic  thinking,  evaluation,  abstraction,  and  generalisation  tend  to  perform  well  in  robotics 
programming, while those who perceive themselves as strong in decomposition do not necessarily achieve 
high  scores.  The  positive  relationship  between  students’  perceived  abilities  in  algorithmic  thinking, 
abstraction,  evaluation,  and  generalisation  and  their  actual  performance  can  be  attributed  to  the 
confidence-competence loop. When students believe they are skilled in a particular area, they are more  
likely to engage with the material actively, apply their knowledge effectively, and persist through challenges, 
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leading to better performance. Bandura and Wessels’s (1997) self-efficacy theory supports this, arguing 
that individuals who have confidence in their abilities are more likely to succeed because they engage more 
deeply with tasks and demonstrate higher persistence.

The positive correlation between self-perceived evaluation skills and achievement can be attributed to the 
role of  debugging and code refinement in programming. Students who perceive themselves as proficient 
in evaluating and improving their code are likely to perform better, as effective debugging is a crucial 
aspect  of  robotics  programming.  Shute  et  al.  (2017)  found  that  students  with  strong  debugging 
self-efficacy were more likely  to persist  in troubleshooting their  code,  leading to better  programming 
outcomes. Similarly, students who perceive themselves as good at abstraction and generalisation tend to 
achieve  higher  scores.  This  is  likely  because  abstraction  allows  them to  focus  on  essential  problem 
components  without  getting  overwhelmed  by  details,  and  generalisation  helps  them  apply  previous 
knowledge to new programming challenges. This finding aligns with Grover and Pea (2018), who assert  
that abstraction and generalisation are critical for effective computational problem-solving, as they help 
students create reusable code structures and adapt to different programming scenarios.

However, the negative correlation between decomposition and achievement suggests that students who 
believe they are good at decomposition may struggle with applying it effectively in robotics programming. 
This may be because decomposition requires not only breaking down a problem into smaller parts but 
also successfully  integrating these parts  into a  coherent  solution.  If  students  overemphasise  breaking 
problems apart without successfully synthesising solutions, their programming performance may suffer. 
Weintrop et al. (2016) argue that while decomposition is an essential skill, its effectiveness depends on 
students’ ability to recombine decomposed elements into functional programs. Similarly, Grover and Pea 
(2018) note that decomposition alone does not guarantee programming success; it must be coupled with 
synthesis  and integration skills.  Another  possible  reason for  the  misalignment  between self-perceived 
decomposition skills and actual achievement could be cognitive overload. When students break down a 
problem into too many components, they might struggle to track dependencies and relationships between 
different parts  of  the program, leading to confusion and reduced performance.  Lye and Koh (2014) 
highlight that students who lack experience in reintegrating decomposed parts often face difficulties in 
programming, as they may lose sight of  the overall goal.

5. Conclusions
This study explored the relationship between computational thinking (CT) dimensions and achievement in 
robotics programming among computer education students in Southeast Nigeria. The results show that  
algorithmic thinking is the strongest predictor of  achievement, emphasising its crucial role in structuring 
and  implementing  logical  problem-solving  approaches  in  programming.  Other  dimensions,  such  as 
abstraction, evaluation, and generalisation, also show positive correlations with achievement, reinforcing 
their importance in developing computational proficiency. However, decomposition exhibits a negative 
relationship with achievement, suggesting that while breaking down problems is essential, students may 
struggle  with  integrating  decomposed  elements  into  cohesive  solutions.  Furthermore,  the  five  CT 
dimensions collectively explained the variance in robotics programming achievement, demonstrating that 
computational thinking plays a vital role in programming success. Additionally, students’ self-perceptions 
of  their computational thinking abilities align with their actual performance in most dimensions, except  
for decomposition, where a misalignment exists.

6. Recommendations
The following recommendations were made based on the findings of  the study:

1. Since algorithmic thinking has been found to have a strong predictive power, educators should 
integrate more algorithm-focused exercises, such as structured coding challenges and debugging 
tasks, into the curriculum to enhance logical problem-solving skills.
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2. Decomposition  was  found  to  negatively  correlate  with  achievement.  Therefore,  instructional 
methods  should  emphasise  effective  problem breakdown and  reconstruction  through  guided 
exercises, scaffolded learning, and project-based tasks.

3. Practical and collaborative learning should be promoted to strengthen abstraction, evaluation, and 
generalisation.  Hands-on  projects,  peer  programming,  and  real-world  applications  should  be 
incorporated to reinforce computational thinking in robotics programming.

7. Future Studies
This study offers significant insights into the predictive influence of  computational thinking on students’ 
performance in a  project-based robotics  programming course;  however,  a  number of limitations were 
acknowledged:

1. The sample size (N=105) is relatively small and comes from just one region (Southeast Nigeria),  
which may make it hard to generalise the results to other regions of  Nigeria or other educational 
systems.  

2. The study utilised a correlational design, which facilitates identification of  relationships among 
variables  but  does  not  confirm  causation;  hence,  caution  is  warranted  in  interpreting  the 
directionality of  the observed interactions.  

3. While  validated instruments were utilised for measuring computational  thinking,  some of  the 
assessments depended on how students perceived themselves, which could be affected by biases 
like wanting to look good or not knowing much about themselves.  

4. The  findings  underscore  the  negative  impact  of  decomposition  difficulties  on  students’ 
achievement.  Subsequent  research  should  investigate  whether  structured  training  in 
decomposition strategies may mitigate this issue and improve the ability of  learners to effectively  
integrate decomposed components into functional robotic systems.
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