OmniaScience Journal of Technology and Science Education
JOTSE, 2026 — 16(1): 95-108 — Online ISSN: 2013-6374 — Print ISSN: 2014-5349

https://doi.otg/10.3926/jotse.3402

EXPLORING THE RELATIONSHIP BETWEEN COMPUTATIONAL
THINKING DIMENSIONS AND ACHIEVEMENT IN ROBOTICS
PROGRAMMING AMONG COMPUTER EDUCATION STUDENTS

Fadip Audu Nannim" *); Moeketsi Mosia' "/, Modesta Ero Ezema®("/, Felix Egara’

"Department of Mathematics, Natural Sciences and Technology Education,
University of the Free State, Bloemfontein (South Africa)

*Department of Computer Science, University of Nigeria, Nsukka (Nigetia)

“Corresponding anthor: fadip.nannind@unn.edn.ng,
MosiaMLS@ufs.ac.za, modesta.ezema@unn.edu.ng, egara. fo@ufs.ac.za

Received March 2025
Accepted October 2025

This study investigates the relationship between computational thinking (CT) dimensions and
achievement in robotics programming among computer education students in Southeast Nigeria. A
correlational research design was adopted, and data were collected from 105 students and analysed
using Pearson correlation and multiple regression techniques. The results show that algorithmic
thinking exhibits the strongest positive correlation with achievement (» = .596, p < .001), followed by
evaluation (r = .449, p < .001), generalisation (r = .4106, p < .001), and abstraction (r = .374, p < .001).
However, decomposition negatively correlated with achievement (» = —.392, p < .001), indicating
difficulties in effectively applying decomposition skills to robotics programming tasks. Collectively, the
tive CT dimensions significantly predict students’ achievement, accounting for 74.5% of the variance
(r? = .745, F(5,99) = 57.845, p < .001). Regression analysis further identifies algorithmic thinking as the
strongest positive predictor (§ = 1.116, p < .001), while decomposition (§ = —.630, p < .001) and
evaluation (§ = —.449, p < .001) negatively impact achievement. Additionally, students’ self-perceptions
of their CT abilities generally align with their performance, except for decomposition, where a negative
relationship suggests potential gaps in skill application. These results underscore the critical role of
algorithmic thinking in robotics programming success and suggest the need for targeted interventions
to address challenges associated with decomposition and evaluation skills. The study offers valuable
insights for educators and curriculum developers aiming to enhance computational thinking instruction
in robotics education.

Keywords — Achievement, Computer education, Computational thinking, Robotics programming,
Algorithmic thinking,

7o cite this article:

Nannim, EA., Mosia, M., Ezema, M.E., & Egara, E (2026). Exploring the relationship between
computational thinking dimensions and achievement in robotics programming among computer
education students. fJowrnal of Technology — and Science Edwcation, 16(1), 95-108.
https://doi.org/10.3926/jotse.3402

-95-

mailto:fadip.nannim@unn.edu.ng
https://doi.org/10.3926/jotse.3402
https://doi.org/10.3926/jotse.3402
mailto:egara.fo@ufs.ac.za
mailto:modesta.ezema@unn.edu.ng
mailto:MosiaMS@ufs.ac.za
http://www.omniascience.com/
https://orcid.org/0000-0002-6452-5602
https://orcid.org/0000-0002-7189-0018
https://orcid.org/0000-0001-8348-2698
https://orcid.org/0000-0002-6249-9615

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

1. Introduction

There is a silent revolution going on in the busy classrooms of Southeast Nigeria. Students used to just
learn in traditional ways, but today they are learning about robotics programming, which is a fast-paced
field. This shift is not just about learning to code; it’s about fostering a new way of thinking,
computational thinking (CT). As these students navigate the complexities of programming robots, they
are developing skills that extend far beyond the classroom, preparing them for a future where technology
and innovation are paramount.

Computational Thinking (CT), a term popularised by Jeannette Wing in 2000, refers to a problem-solving
process that includes a number of characteristics, such as logically organising and analysing data, breaking
down complex problems into manageable parts, and creating algorithms to solve these problems (Palop,
Diaz, Rodriguez-Mufiiz & Santaengracia, 2025; Wing, 2000). CT is increasingly recognised as a
fundamental skill for all students, not just those pursuing careers in computer science (Acevedo-Borrega,
Valverde-Berrocoso & Garrido-Arroyo, 2022; Grover & Pea, 2013). It encompasses a range of cognitive
skills and processes, including abstraction, algorithmic thinking, decomposition, evaluation and
generalisation (Rao & Bhagat, 2024). Abstraction in computational thinking refers to the process of
filtering out unnecessary details and focusing on essential features of a problem to develop a general
solution (Wing, 2000). This skill is fundamental in programming and robotics, where students must
identify key components and relationships while ignoring extraneous elements. Recent studies highlight
the importance of abstraction in problem-solving, particularly in robotics, artificial intelligence (Al) and
data science applications (Gizzi, Nair, Chernova & Sinapov, 2022; Grover & Pea, 2018). However, despite
its significance, many students struggle with abstraction due to difficulties in distinguishing between
relevant and irrelevant details (Shute, Sun & Asbell-Clarke, 2017). There is a need for more instructional
strategies that explicitly teach abstraction skills, particularly through hands-on activities and real-world
applications in robotics programming.

Decomposition, on the other hand, involves breaking down complex problems into smaller, more
manageable sub-problems, making them easier to analyse and solve (Selby & Woollard, 2014). This
approach is widely used in computational problem-solving, software engineering, and robotics (Brennan &
Resnick, 2012). Research has shown that effective decomposition enhances students’ ability to tackle
large-scale problems systematically (Waite, Curzon, Marsh & Sentance, 2020). However, there is a paucity
of studies on the correlation between decomposition and achievement in robotics programming. Since
developing decomposition skills in programming is often not easy (Kwon & Cheon, 2019), students may
struggle with correctly structuring sub-problems. This suggests that further research into instructional
strategies is necessary to help students develop efficient decomposition skills while ensuring that breaking
down problems does not interfere with overall problem comprehension and achievement. Algorithmic
thinking refers to the ability to design and apply step-by-step procedures to solve problems efficiently
(Denning, 2009). It is a fundamental component of computational thinking and is particularly essential in
robotics programming, where students must develop precise sequences of instructions for their robots to
execute (Grover & Pea, 2018). Research has consistently shown that strong algorithmic thinking skills lead
to improved programming performance (Csizmadia, Standl & Waite, 2019). However, many students still
struggle with creating optimised and error-free algorithms (Sabuncuoglu & Sezgin, 2022), which can
hinder their success in programming. While existing studies emphasise the importance of algorithmic
thinking, there is still a paucity of research on the relationship between algorithmic thinking and students’
achievement in robotics education.

Evaluation in computational thinking involves assessing the effectiveness and efficiency of solutions,
debugging errors, and refining algorithms to improve performance (Shute et al., 2017). In robotics
programming, students must analyse their code and test their robots to determine whether their
solutions meet the desired objectives. Studies indicate that students who engage in frequent evaluation
processes tend to develop stronger problem-solving and debugging skills (Chuang & Chang, 2024,
Brennan & Resnick, 2012). Generalisation refers to the ability to apply previously learned concepts and
solutions to new problems, thereby enhancing problem-solving efficiency and adaptability (Selby &

-96-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

Woollard, 2014). In robotics programming, students must recognise patterns and transfer coding
principles across different tasks. Research has shown that generalisation enhances computational
fluency and fosters creative problem-solving (Aranda & Ferguson, 2022; Waite et al., 2020). Yet, few
studies have investigated the relationship between generalisation and achievement in robotics
programming,

Robotics programming involves designing, writing, and testing code that controls robots. This field has
gained significant traction in educational settings due to its hands-on nature and its ability to make
abstract concepts tangible (Talan, 2021). Research has shown that robotics programming can enhance
students’ engagement, motivation, and understanding of complex STEM concepts (Kert, Erko¢ & Yeni,
2020). Moreover, it provides a practical context for applying computational thinking skills, thereby
reinforcing and deepening students’ understanding (Noh & Lee, 2020; Yildiz & Seferoglu, 2021).

Despite the growing body of research on computational thinking (CT) and robotics programming, there
are still some big gaps. A significant portion of the literature comes from Western contexts, with little
focus on African settings, especially Nigeria and Southeast Nigeria (Rovshenov & Sarsar, 2023). Recent
regional initiatives have commenced efforts to rectify this deficiency, with few studies illustrating the
capacity of educational robots to improve students’ programming achievement, task persistence, and
computational thinking (Nannim, Ibezim, Mosia & Oguguo, 2025; Nannim, Ibezim, Oguguo &
Nwangwu, 2024). Others have investigated alternative ways, including unplugged methods, to facilitate
the computational thinking of novice learners (Agbo, Okpanachi, Ocheja, Oyelere & Sani, 2024).
Nonetheless, research into the particular aspects of computational thinking most affected by robotics
programming is still very scarce, highlighting the necessity for contextualised research that enhances
comprehension of how robotics might facilitate computational thinking in African educational settings
(Rao & Bhagat, 2024). Furthermore, there is a lack of correlational studies examining the impact of the
dimension of CT on students’ academic achievement in robotics programming. Therefore, this study aims
to address the lack of comprehensive research on the relationship between computational thinking
dimensions and achievement in robotics programming among computer education students in Southeast
Nigeria. By exploring this relationship, the study seeks to fill the existing research gaps and provide
insights that can inform educational practices and policies in the region. The following research questions
were raised to guide the study:

1. What is the relationship between each dimension of computational thinking (abstraction,
decomposition, algorithmic thinking, evaluation, and generalisation) and achievement in robotics
programming among computer education students in Southeast Nigeria?

2. How do the dimensions of computational thinking collectively predict achievement in robotics
programming among computer education students?

3. Which dimension of computational thinking is the strongest predictor of achievement in robotics
programming among computer education students?

4. How do students’ perceptions of their computational thinking abilities correlate with their actual
performance in robotics programming?

1.1. Theoretical Framework
1.1.1. Constructionism Theory

Constructionism, developed by Seymour Papert, is a learning theory that emphasises the importance of
learners actively constructing their own knowledge through hands-on, meaningful activities. This theory
builds on Jean Piaget’s constructivist ideas, suggesting that knowledge is best acquired when learners are
engaged in creating tangible artefacts that reflect their understanding. Constructionism posits that learners
construct knowledge most effectively when they are involved in creating something meaningful (Papert,
1980, 1993). This making process allows learners to experiment, iterate, and refine their understanding,
The theory advocates for project-based learning, where students work on projects that are personally

-97-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

meaningful and relevant. This approach encourages deep engagement and sustained interest. Additionally,
constructionism emphasises the social nature of learning. Collaboration with peers provides opportunities
for learners to share ideas, receive feedback, and build on each other’s knowledge. Reflection is also a
critical component of constructionism. Learners are encouraged to think about their learning process,
evaluate their progress, and make adjustments as needed.

In the context of this study, constructionism provides a robust framework for understanding how
computer education students in Southeast Nigeria develop computational thinking skills through robotics
programming. The hands-on, project-based nature of robotics programming aligns well with the
principles of constructionism, as students actively engage in creating and programming robots, which
reinforces their computational thinking skills. As students engage in robotics programming, they construct
knowledge by building and programming robots. This hands-on activity allows them to apply
computational thinking skills such as abstraction, decomposition, and algorithmic thinking in a practical
context. For example, when students program a robot to navigate a maze, they must break down the
problem into smaller tasks, develop algorithms, and test their solutions, thereby reinforcing their
understanding of computational concepts.

The 8-week robotics programming course is structured around projects that are meaningful and
relevant to the students. These projects provide a context for students to apply their computational
thinking skills in a sustained and engaging manner. For instance, students might work on projects such
as designing a robot to perform specific tasks, which requires them to apply and integrate various
computational thinking dimensions. Robotics programming often involves teamwork, where students
collaborate to solve problems and build robots. This collaborative environment fosters the sharing of
ideas, peer learning, and collective problem-solving. Through collaboration, students can learn from
each other’s experiences, receive feedback, and refine their computational thinking skills. Throughout
the robotics programming course, students are encouraged to reflect on their learning process, evaluate
their progress, and make adjustments as needed. This reflective practice helps students to internalise
their learning, identify areas for improvement, and develop a deeper understanding of computational
thinking,

By grounding this study in the Constructionism Theory, the researcher can explore how the active,
project-based, and collaborative nature of robotics programming influences the development of
computational thinking skills among computer education students. This theoretical framework not only
provides a basis for understanding the learning process but also highlights the importance of hands-on,
meaningful activities in achieving educational outcomes

2. Methodology
2.1. Research Design

This study adopts a correlational research design to investigate the relationship between the dimensions of
computational thinking and achievement in robotics programming among computer education students.
The correlational research design is a type of non-experimental research method used to measure the
relationship between two or more variables without manipulating them (Hassan, 2024). This design
involves collecting data on the variables of interest and using statistical techniques to determine the
strength and direction of the relationships between them. The design is appropriate for this study because
it effectively addresses the research objectives of exploring and quantifying the relationships between
computational thinking dimensions and achievement in robotics programming, without the need for
experimental manipulation.

2.2. Participants

The participants of the study were computer education students from universities and degree-awarding
institutions in southeast Nigeria who had undergone an 8-week robotics programming course using
Arduino (CRE 252 — Robotics Programming II). The population comprise year-two computer and

-98-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

robotics education students from the University of Nigeria, Nsukka, Enugu State (36), Alvan Ikoku
Federal University of Education, Owerri, Imo State (41) and Nwafor Orizu College of Education,
Nsugbe, Anambra State (28). Three intact classes of 105 students were purposively selected based on their
enrolment in the course..

2.3. Instruments for Data Collection

Two instruments were used for data collection thus: the Computational Thinking Assessment
Questionnaire (CTAQ) and the Robotics Programming Achievement Test (RPAT). The CTAQ was
adapted from (Tsai, Liang & Hsu, 2021). It was a 19-item instrument developed to assess the
computational thinking abilities of students across five dimensions: abstraction, decomposition,
algorithmic thinking, evaluation, and generalisation. The CTAQ was rated on a 5-point Likert scale
ranging from 1=Not Agree at All, 2=Not Agree, 3=Undecided, 4=Agree, to 5=Totally Agree. The initial
instrument has a reliability index of 0.91, while the adapted version yields a Cronbach’s alpha coefficient
of 0.87 through trial testing. The RPAT measured students’ achievement in the 8-week robotics
programming course. It comprised 25 multiple-choice questions on Arduino programming concepts,
problem-solving, and implementation. The validity of the RPAT was ensured through expert review, and
its reliability was confirmed with a Kuder-Richardson formula 20 (KR-20) coefficient of 0.82. A test
blueprint (Table of Specifications) guided the construction of the items on RPAT.

2.4. Procedure

The study was conducted over 10 weeks. The first 8 weeks were dedicated to teaching robotics
programming with Arduino, during which students were engaged in hands-on activities and guided
practice sessions. At the end of the course, the CTAQ and RPAT were administered to the students.
Data collection was supervised by the researcher and trained assistants to ensure accuracy and
consistency.

2.5. Data Analysis

The collected data were analysed using Pearson’s Moment correlation coefficient (PPMC) to determine
the relationships between each computational thinking dimension and achievement in robotics
programming. Multiple regression analysis was employed to assess the extent to which the dimensions
of computational thinking collectively predicted students’ achievement. For decision-making, a value
close to 1 indicates a strong positive correlation, a value close to -1 indicates a strong negative
correlation and a value close to 0 indicates no correlation. The correlation is statistically significant if

p <0.05.

3. Results
3.1. Research Question One

What is the relationship between each dimension of computational thinking (abstraction, decomposition,
algorithmic thinking, evaluation, and generalisation) and achievement in robotics programming among
computer education students in Southeast Nigeria?

The correlation matrix in Table 1 shows the relationships between computational thinking (CT)
dimensions and achievement. It was found that Algorithmic Thinking has a strong positive correlation
with achievement (r = .596, p < .001), suggesting that students who excel in algorithmic thinking tend to
achieve higher in robotics programming. Evaluation also shows a significant positive correlation (r = .449,
p <.001). Abstraction (r = .374, p < .001) and Generalization (» = .416, p < .001) have moderate positive
correlations with achievement. Decomposition, however, has a negative correlation with achievement
(r = —.392, p<.001), implying that higher decomposition skills may be associated with lower achievement
in robotics programming, These findings indicate that most dimensions of computational thinking have a
positive influence on achievement, except for decomposition, which appears to have an inverse
relationship.

-99-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

y $ £
8 g ﬁ 2 =] 2
= .2 g g 8 3
13) b3 g & = =
> & g S .£ s g
.2 k] Q g H =) b3)
5 2 9 &0.5 g §
Test Dimension < Q a 2= <5 (C]
Achievement 1.000 374 -.392 .596 .449 416
Abstraction 374 1.000 165 .508 591 .380
Pearson Decomposition -.392 165 1.000 253 177 .016
Correlation Algorithmic Thinking .596 .508 253 1.000 .867 716
Evaluation 449 591 177 .867 1.000 758
Generalisation 416 .380 .016 716 758 1.000
Achievement . <.001 <.001 <.001 <.001 <.001
Abstraction .000 . .047 .000 .000 .000
. . Decomposition .000 .047 . .005 .036 435
Sig. (1-tailed) . T
Algorithmic Thinking .000 .000 .005 . .000 .000
Evaluation .000 .000 .036 .000 . .000
Generalisation .000 .000 435 .000 .000

Table 1. Correlation Matrix of the Relationship Between Dimensions of Computational Thinking
and Achievement in Robotics Programming (Nuwmber of Respondents [N] = 105)

3.2. Research Question Two
How do the dimensions of computational thinking collectively predict achievement in robotics

programming among computer education students?

Change statistics

r | Adjusted r| Std. error of
Model t square | square the estimate | rsquare change |f change| dfl | df2 | Sig. f change

1 .863a | .745 732 8.43863 745 57.845 5 99 <.001

a. Predictors: (Constant), Generalisation, Decomposition, Abstraction, Algorithmic Thinking, Evaluation

Table 2. Model Summary on How the Dimensions of Computational Thinking
Collectively Predict Achievement in Robotics Programming

Model Sum of squares df Mean square f Sig.

Regression 20595.728 5 4119.146 57.845 <.001b
1 Residual 7049.834 99 71.210

Total 27645.562 104

a. Dependent Variable: Achievement
b. Predictors: (Constant), Generalisation, Decomposition, Abstraction, Algorithmic Thinking, Evaluation

Table 3. Analysis of Variance (ANOVA) on How the Dimensions of Computational
Thinking Collectively Predict Achievement in Robotics Programming

The model summary in Table 2 and the ANOVA in Table 3 show that the five dimensions of
computational thinking collectively explain 74.5% of the variance in students’ achievement (#* = .745).
which is statistically significant (F(5.99)=57.845, p < .001). This indicates that computational thinking
dimensions. when considered together, are strong predictors of robotics programming achievement. The
standard error of the estimate (8.439) suggests a relatively good fit of the model.

3.3. Research Question Three
Which dimension of computational thinking is the strongest predictor of achievement in robotics

programming among computer education students?

-100-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

Unstandardized
Coefficients Standardized Coefficients
Model B Std. Error Beta t Sig.
(Constant) 114.593 9.204 12.450 <.001
Abstraction 3.836 1.110 220 3.457 <.001
1 Decomposition -22.573 1.941 -.630 -11.627 | <.001
Algorithmic Thinking 20.332 1.943 1.116 10.467 <.001
Evaluation -9.565 2.536 -.449 -3.772 <.001
Generalisation -2.345 1.658 -116 -1.415 160

Table 4. Summary of Coefficients of Regression on Which Dimension of Computational
Thinking is the Strongest Predictor of Achievement in Robotics Programming

Table 4 shows the standardised beta coefficients in the regression output to help identify the strongest
predictor of achievement in robotics programming among computer education students. It was found
that Algorithmic Thinking has the highest positive standardised beta coefficient (3 = 1.116, p < .001),
indicating that it is the strongest predictor of achievement. Abstraction is also a significant positive
predictor (B =.220,p < .001). Evaluation has a significant negative effect (8 = —.449, p < .001), suggesting
that higher evaluation skills might unexpectedly contribute to lower achievement. Decomposition shows a
strong negative impact on achievement (3 = —.630, p < .001), reinforcing its negative correlation.
Generalisation is not a significant predictor (p=.160), meaning its contribution to achievement is minimal.
Overall, Algorithmic Thinking emerges as the most potent positive predictor, while Decomposition
negatively impacts achievement.

3.4. Research Question Four

How do students’ perceptions of their computational thinking abilities correlate with their actual
performance in robotics programming?

To answer this research question, the results in Table 1 were carefully explored. The results suggest that
students’ self-perceptions of their computational thinking skills (as indicated by abstraction,
decomposition, algorithmic thinking, evaluation, and generalisation) correlate with their actual
performance in varying degrees: Positive correlations with achievement suggest that students who
perceive themselves as proficient in algorithmic thinking, evaluation, abstraction, and generalisation tend
to perform well in robotics programming. However, the negative correlation between decomposition and
achievement (r = —.392, p < .001) suggests that students who believe they are good at decomposition may
not necessarily achieve high scores, or they may struggle to apply decomposition effectively in robotics
programming. These findings indicate that while most self-perceived CT skills align with actual
performance, decomposition stands out as an area where perceptions and performance do not align
positively.

4. Discussions

In this section, we discussed the findings of this study by suggesting plausible reasons for the findings and
comparing these findings with existing literature.

4.1. Relationship Between Dimensions of Computational Thinking and Achievement in Robotics
Programming

The results in Table 1 show that algorithmic thinking has the strongest positive correlation with
achievement in robotics programming. This suggests that students who excel in algorithmic thinking tend
to perform better in robotics programming, A reasonable explanation for this finding is that algorithmic
thinking allows students to break problems down into logical steps, come up with efficient solutions, and
write code to implement them, which are all important skills for programming robots. This aligns with
existing literature, as studies by Roman-Gonzalez, Pérez-Gonzalez and Jiménez-Fernandez (2017) and

-101-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

Grover and Pea (2018) have also identified algorithmic thinking as a strong predictor of success in
programming-related tasks. Since robotics programming requires iterative problem-solving, debugging,
and optimisation, students with strong algorithmic thinking skills will likely adapt more effectively and
achieve higher outcomes.

Similarly, evaluation shows a significant positive correlation with achievement, indicating that students
who can assess and refine their work effectively tend to perform better. This is not surprising, as
evaluation skills are essential for debugging, testing, and improving program efficiency. Brennan and
Resnick (2012) emphasised that evaluation plays a key role in computational thinking, as it enables
students to recognise errors and optimise their solutions. Shute et al. (2017) also highlighted evaluation as
a crucial skill in computational problem-solving, reinforcing its importance in robotics programming. The
study further found that abstraction and generalisation have moderate positive correlations with
achievement. Abstraction allows students to focus on essential details while ignoring irrelevant
complexities, which is particularly beneficial in structuring and modularising code. Generalisation, on the
other hand, enables students to recognise patterns and apply learned problem-solving approaches to new
challenges. Research by Lye and Koh (2014) and Weintrop, Beheshti, Horn, Orton, Jona, Trouille et al.
(2016) has similarly indicated that students with strong abstraction and generalisation skills tend to
perform well in programming tasks, as these skills support adaptive thinking and code reusability.

However, an unexpected finding was the negative correlation between decomposition and achievement.
Decomposition, which involves breaking a problem into smaller, manageable sub-problems, is typically
considered a fundamental computational thinking skill. However, in this study, higher decomposition skills
were associated with lower achievement in robotics programming, One plausible explanation is that
excessive focus on decomposition may lead to difficulty in integrating the smaller components into a
coherent whole. When students decompose problems too rigidly, they might struggle to synthesise
solutions efficiently, leading to fragmented or overly complex code structures. Grover and Pea (2018) also
observed that novice programmers sometimes face challenges in applying decomposition effectively, as
they may overcomplicate problems rather than simplifying them. Lye and Koh (2014) further noted that
while decomposition is beneficial, its effectiveness depends on the student’s ability to reconstruct the
broken-down components into a functional solution.

Therefore, these findings align with previous research that emphasises algorithmic thinking as the most
critical computational thinking skill for programming success (Roman-Gonzalez et al., 2017; Grover &
Pea, 2018). The positive influence of evaluation, abstraction, and generalisation is also supported by
existing literature (Weintrop et al,, 2016; Shute et al., 2017). However, the negative correlation of
decomposition contrasts with conventional computational thinking models (Brennan & Resnick, 2012;
Lye & Koh, 2014), suggesting that decomposition may not always be beneficial, particularly if students
struggle to integrate fragmented components into a complete program.

4.2. How the Dimensions of Computational Thinking Collectively Predict Achievement in
Robotics Programming

The results in Tables 2 and 3 show that the five dimensions of computational thinking such as abstraction,
decomposition, algorithmic thinking, evaluation, and generalisation, collectively explain 74.5% of the
variance in students’ achievement in robotics programming, This indicates that computational thinking
strongly predicts success in robotics programming. The relatively low standard error of the estimate
further suggests that the model fits the data well, meaning that these dimensions, when considered
together, effectively predict students’ achievement. One plausible explanation for this finding is that
robotics programming inherently requires the simultaneous application of multiple computational
thinking skills. Students must abstract key problem components, decompose complex tasks into
manageable parts, apply algorithmic thinking to structure logical sequences, use evaluation to debug and
optimise solutions, and leverage generalisation to apply learned concepts across different problems. This
interconnectedness among the CT dimensions likely contributes to the strong predictive power observed
in the study. Another reason for the high variance explained by computational thinking could be that CT

-102-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

skills collectively enhance cognitive flexibility, a crucial trait in programming, Algorithmic thinking and
evaluation, for instance, work together to refine problem-solving strategies, while abstraction and
decomposition help simplify intricate coding challenges. When students develop these skills holistically,
they become more adept at approaching, analysing, and solving robotics programming tasks efficiently,
leading to higher achievement levels.

These findings align with previous research emphasising the integral role of computational thinking in
programming success. Roman-Gonzalez et al. (2017) found that computational thinking skills explain a
significant portion of students’ programming proficiency, particularly when these skills are developed
collectively. Similarly, Weintrop et al. (2016) highlichted how students with well-developed computational
thinking abilities tend to navigate complex coding challenges more effectively, reinforcing the idea that CT
is a crucial determinant of programming achievement. Grover and Pea (2018) further argue that
computational thinking should be viewed as a cognitive framework rather than a set of isolated skills.
Grover and Pea emphasise that students who develop computational thinking holistically are better
equipped to tackle programming challenges, debug code, and optimise solutions. This perspective
supports the current study’s findings that CT dimensions, when considered together, provide a strong
predictive model for robotics programming success.

However, some studies suggest that the predictive power of computational thinking skills may vary
depending on instructional methods, prior knowledge, and motivation. Lye and Koh (2014) found that
while CT significantly influences programming performance, its effectiveness is sometimes moderated by
students’ prior experience and the nature of the programming tasks. This implies that while computational
thinking is a key predictor, other factors such as teaching approaches, student engagement, and external
support systems may also shape students’ achievement in robotics programming, While the current study
finds that CT dimensions collectively explain 74.5% of the variance in achievement, other researchers
argue that non-cognitive factors should not be overlooked (Shute et al., 2017). Shute et al. highlighted the
role of self-efficacy, motivation, and collaboration in shaping programming success. These factors, though
not explicitly included in the current model, may contribute to the remaining unexplained variance in
students’ robotics programming achievement.

4.3. The Dimension of Computational Thinking Which is The Strongest Predictor of
Achievement in Robotics Programming Among Computer Education Students

The results of this study in Table 4 show that algorithmic thinking is the strongest predictor of
achievement in robotics programming, while decomposition and evaluation have significant negative
effects. Abstraction is also a significant positive predictor, whereas generalisation does not significantly
predict achievement. The dominance of algorithmic thinking as the strongest predictor of achievement
can be explained by its direct relevance to programming logic and problem-solving. Robotics
programming requires students to construct logical sequences of instructions that a robot can execute
efficiently. Students with strong algorithmic thinking skills are better equipped to develop structured and
efficient solutions, leading to improved performance. This finding is consistent with Wing’s (2000)
assertion that algorithmic thinking is a fundamental skill in computational problem-solving, as it enables
individuals to break down problems into a sequence of well-defined steps.

Also, the positive predictive power of abstraction can be attributed to its role in simplifying complex
problems and focusing on essential details. In robotics programming, students must manage multiple
components, including sensor inputs, control logic, and sequential execution of tasks. Those proficient in
abstraction can efficiently filter out irrelevant details and concentrate on the core structure of a problem,
enhancing their ability to design effective programs. This aligns with Brennan and Resnick’s (2012) study,
which highlights abstraction as a key computational thinking skill that enables students to handle
complexity and design robust programming solutions. On the other hand, the negative impact of
decomposition on achievement is unexpected but may suggest that students struggle with reintegrating
decomposed components into a cohesive whole. While decomposition is generally considered a beneficial
computational thinking skill, its effectiveness depends on how well students can reassemble broken-down

-103-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

problems into functional solutions. If students focus too much on breaking down a problem without
successfully synthesising the components, they may experience difficulty in structuring their programs
efficiently. Grover and Pea (2018) similarly note that while decomposition is useful for problem-solving,
improper or excessive decomposition without reintegration can lead to cognitive overload and inefficient
programming;

Furthermore, the negative relationship between evaluation and achievement may stem from the
possibility that students who spend excessive time debugging or overanalysing their code struggle to
complete their programming tasks efficiently. Evaluation is crucial for identifying errors and optimising
code, but if students become overly focused on debugging without confidence in their corrections, they
may become trapped in iterative cycles of problem identification and revision. This finding resonates
with Shute et al. (2017), who emphasise that students who lack structured debugging strategies often
experience frustration, leading to lower overall performance in programming tasks. While
generalisation’s non-significant contribution to achievement (p = .160) suggests that transferable
problem-solving skills may not directly impact robotics programming performance. Generalisation is an
essential computational thinking skill that allows students to apply previously learned knowledge to new
problems. However, robotics programming often involves highly specific, context-dependent
problem-solving approaches, where generalised knowledge may not always be applicable. This finding is
consistent with Weintrop et al. (2016), who argue that while generalisation is an important
computational thinking skill, its impact varies depending on the similarity between previously
encountered problems and new tasks.

The strong predictive power of algorithmic thinking aligns with several studies that emphasise its role in
programming success. For instance, Roman-Gonzalez et al. (2017) found that students with strong
algorithmic thinking abilities consistently outperform their peers in programming tasks, reinforcing the
notion that algorithmic thinking is essential for effective coding. Similatly, Lye and Koh (2014) highlight
algorithmic thinking as the backbone of programming education, as it enables students to break problems
into logical sequences and implement solutions systematically. However, the negative relationship between
decomposition and achievement disagrees with some studies that view decomposition as a critical
computational thinking skill. Brennan and Resnick (2012), for example, emphasise decomposition as an
essential process in programming, However, this study’s findings suggest that if students focus too much
on breaking down a problem without properly integrating the components, they may struggle with task
completion. Grover and Pea (2018) caution that decomposition can be counterproductive if students are
not guided on how to synthesise decomposed parts into complete solutions, which supports the current
study’s findings. The unexpected negative impact of evaluation also contrasts with studies that highlight its
role in debugging and code refinement (Shute et al., 2017). However, it aligns with research suggesting
that students who struggle with debugging may experience frustration, leading to decreased motivation
and lower achievement (Lye & Koh, 2014). If students lack strategic approaches to debugging, evaluation
may become a time-consuming, trial-and-error process rather than a structured skill that enhances
performance.

4.4. How Students’ Perception of their Computational Thinking Abilities Correlates with their
Actual Achievement in Robotics Programming

Results from Table 1 suggest that students’ self-perceptions of their computational thinking (CT) abilities
generally align with their actual performance in robotics programming, except for decomposition, which
exhibits a negative correlation with achievement. Specifically, students who believe they are proficient in
algorithmic thinking, evaluation, abstraction, and generalisation tend to perform well in robotics
programming, while those who perceive themselves as strong in decomposition do not necessarily achieve
high scores. The positive relationship between students’ perceived abilities in algorithmic thinking,
abstraction, evaluation, and generalisation and their actual performance can be attributed to the
confidence-competence loop. When students believe they are skilled in a particular area, they are more
likely to engage with the material actively, apply their knowledge effectively, and persist through challenges,

-104-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

leading to better performance. Bandura and Wessels’s (1997) self-efficacy theory supports this, arguing
that individuals who have confidence in their abilities are more likely to succeed because they engage more
deeply with tasks and demonstrate higher persistence.

The positive correlation between self-perceived evaluation skills and achievement can be attributed to the
role of debugging and code refinement in programming. Students who perceive themselves as proficient
in evaluating and improving their code are likely to perform better, as effective debugging is a crucial
aspect of robotics programming. Shute et al. (2017) found that students with strong debugging
self-efficacy were more likely to persist in troubleshooting their code, leading to better programming
outcomes. Similatly, students who perceive themselves as good at abstraction and generalisation tend to
achieve higher scores. This is likely because abstraction allows them to focus on essential problem
components without getting overwhelmed by details, and generalisation helps them apply previous
knowledge to new programming challenges. This finding aligns with Grover and Pea (2018), who assert
that abstraction and generalisation are critical for effective computational problem-solving, as they help
students create reusable code structures and adapt to different programming scenarios.

However, the negative correlation between decomposition and achievement suggests that students who
believe they are good at decomposition may struggle with applying it effectively in robotics programming.
This may be because decomposition requires not only breaking down a problem into smaller parts but
also successfully integrating these parts into a coherent solution. If students overemphasise breaking
problems apart without successfully synthesising solutions, their programming performance may suffer.
Weintrop et al. (2016) argue that while decomposition is an essential skill, its effectiveness depends on
students’ ability to recombine decomposed elements into functional programs. Similarly, Grover and Pea
(2018) note that decomposition alone does not guarantee programming success; it must be coupled with
synthesis and integration skills. Another possible reason for the misalignment between self-perceived
decomposition skills and actual achievement could be cognitive overload. When students break down a
problem into too many components, they might struggle to track dependencies and relationships between
different parts of the program, leading to confusion and reduced performance. Lye and Koh (2014)
highlight that students who lack experience in reintegrating decomposed parts often face difficulties in
programming, as they may lose sight of the overall goal.

5. Conclusions

This study explored the relationship between computational thinking (CT) dimensions and achievement in
robotics programming among computer education students in Southeast Nigeria. The results show that
algorithmic thinking is the strongest predictor of achievement, emphasising its crucial role in structuring
and implementing logical problem-solving approaches in programming. Other dimensions, such as
abstraction, evaluation, and generalisation, also show positive correlations with achievement, reinforcing
their importance in developing computational proficiency. However, decomposition exhibits a negative
relationship with achievement, suggesting that while breaking down problems is essential, students may
struggle with integrating decomposed elements into cohesive solutions. Furthermore, the five CT
dimensions collectively explained the variance in robotics programming achievement, demonstrating that
computational thinking plays a vital role in programming success. Additionally, students’ self-perceptions
of their computational thinking abilities align with their actual performance in most dimensions, except
for decomposition, where a misalignment exists.

6. Recommendations
The following recommendations were made based on the findings of the study:

1. Since algorithmic thinking has been found to have a strong predictive power, educators should
integrate more algorithm-focused exercises, such as structured coding challenges and debugging
tasks, into the curriculum to enhance logical problem-solving skills.

-105-

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

2. Decomposition was found to negatively correlate with achievement. Therefore, instructional
methods should emphasise effective problem breakdown and reconstruction through guided
exercises, scaffolded learning, and project-based tasks.

3. Practical and collaborative learning should be promoted to strengthen abstraction, evaluation, and
generalisation. Hands-on projects, peer programming, and real-world applications should be
incorporated to reinforce computational thinking in robotics programming.

7. Future Studies

This study offers significant insights into the predictive influence of computational thinking on students’
performance in a project-based robotics programming course; however, a number of limitations were
acknowledged:

1. The sample size (N=105) is relatively small and comes from just one region (Southeast Nigeria),
which may make it hard to generalise the results to other regions of Nigeria or other educational
systems.

2. 'The study utilised a correlational design, which facilitates identification of relationships among
variables but does not confirm causation; hence, caution is warranted in interpreting the
directionality of the observed interactions.

3. While validated instruments were utilised for measuring computational thinking, some of the
assessments depended on how students perceived themselves, which could be affected by biases
like wanting to look good or not knowing much about themselves.

4. The findings underscore the negative impact of decomposition difficulties on students’
achievement. Subsequent research should investigate whether structured training in
decomposition strategies may mitigate this issue and improve the ability of learners to effectively
integrate decomposed components into functional robotic systems.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or
publication of this article.

Ethics Statement

This study was approved by the Ethics Committee of the University of Nigeria, Nsukka, and informed
consent was obtained from all participants prior to data collection.

Funding

This study was funded by ETDP-SETA researcher Chair in Mathematics Education at the University of
the Free State, reference number UFS-AGR22-000053.

References

Acevedo-Borrega, J., Valverde-Berrocoso, J., & Garrido-Arroyo, M.D.C. (2022). Computational thinking
and educational technology: A scoping review of the literature. Education Sciences, 12(1), 39.
https://doi.org/10.3390/educsci12010039

Agbo, EJ., Okpanachi, L.O., Ocheja, P, Oyelere, S.S., & Sani, G. (2024). How can unplugged approach
facilitate novice students’ understanding of computational thinking? An exploratory study from a
Nigerian university. Thinking Skills and Creativity, 51, 101458. https://doi.org/10.1016/j.tsc.2023.101458

Aranda, G., & Ferguson, J.P. (2022). The Creative in Computational Thinking. In Children’s Creative Inguiry in
STEM (309-326). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-94724-8_18

Bandura, A., & Wessels, S. (1997). Se/f-¢fficacy (4-6). Cambridge: Cambridge University Press.

-106-

https://doi.org/10.1007/978-3-030-94724-8_18
https://doi.org/10.1016/j.tsc.2023.101458
https://doi.org/10.3390/educsci12010039

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual meeting of the American educational research
association, Vancouver, Canada (1, 25). Available at: https://scratched.gse. harvard.edu/ct/files/ AERA2012.pdf

Chuang, Y.T., & Chang, H.Y. (2024). Analyzing novice and competent programmers’ problem-solving
behaviors using an automated evaluation system. Science of Computer Programming, 237, 103138.

Csizmadia, A., Standl, B., & Waite, J. (2019). Integrating the constructionist learning theory with
computational thinking classroom activities. Informatics in Education, 18(1), 41-67. Available at:
https:/ /www.ceeol.com/search/article-detailrid=761641

Denning, PJ. (2009). The profession of IT Beyond computational thinking. Communications of the ACM,
52(6), 28-30. https://doi.ore/10.1145/1516046.1516054

Gizzi, E., Nair, L., Chernova, S., & Sinapov, J. (2022). Creative problem solving in artificially intelligent
agents: A survey and framework. Journal of Artificial Intelligence Research, 75, 857-911.
https://doi.org/10.1613 /jair.1.13864

Grover, S., & Pea, R. (2013). Computational thinking in K—12: A review of the state of the field.
Educational researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. Computer
science education: Perspectives on teaching and learning in school, 19(1), 19-38.

Hassan, M. (2024). Correlational Research — Methods, Types and Examples. Strategies, Processes & Techniques
utilized in the collection of data. Available at: https://researchmethod.net/correlational-research/

Kert, S.B., Erkog, M.E, & Yeni, S. (2020). The effect of robotics on six graders’ academic achievement,
computational thinking skills and conceptual knowledge levels. Thinking Skills and Creativity, 38, 100714.

Kwon, K., & Cheon, J. (2019). Exploring Problem Decomposition and Program Development through
Block-Based Programs. International Journal of Computer Science Education in Schools, 3(1), 1. Available at:
https://etic.ed.gov/?id=E]1214684

Lye, S.Y., & Koh, J.H.L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Bebavior, 41, 51-61.
https://doi.org/10.1016/j.chb.2014.09.012

Nannim, FA., Ibezim, N.E., Oguguo, B.C., & Nwangwu, E.C. (2024). Effect of project-based Arduino
robot application on trainee teachers computational thinking in robotics programming course. Education
and Information Technologies, 29(10), 13155-13170. https://doi.org/10.1007/s10639-023-12380-6

Nannim, EA., Ibezim, N.E., Mosia, M., & Oguguo, B.C. (2025). Project-Based Learning with Arduino
Robots: Impact on Undergraduate Students” Achievement and Task Persistence in Robotics
Programming, Frontiers in Robotics and AI, 12, 1615427 https://doi.org/10.3389/frobt.2025.1615427

Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity of
elementary school students. Educational technology research and development, 68(1), 463-484.
https://doi.org/10.1007 /s11423-019-09708-w

Palop, B., Diaz, I., Rodriguez-Muiliz, L.J., & Santaengracia, J.J. (2025). Redefining computational thinking:
A holistic framework and its implications for K-12 education. Education and Information Technologies, 30,
13385-13410. https://doi.org/10.1007/s10639-024-13297-4

Papert, S.A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic books.
Papert, S.A (1993). The children’s machine: Rethinking school in the age of the computer. Basic Books, Inc.

-107-

https://doi.org/10.1007/s10639-024-13297-4
https://doi.org/10.1007/s11423-019-09708-w
https://doi.org/10.3389/frobt.2025.1615427
https://doi.org/10.1007/s10639-023-12380-6
https://doi.org/10.1016/j.chb.2014.09.012
https://eric.ed.gov/?id=EJ1214684
https://researchmethod.net/correlational-research/
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1613/jair.1.13864
https://doi.org/10.1145/1516046.1516054
https://www.ceeol.com/search/article-detail?id=761641
https://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Journal of Technology and Science Education — https://doi.org/10.3926/jotse.3402

Rao, T.S.S., & Bhagat, K.K. (2024). Computational thinking for the digital age: a systematic review of
tools, pedagogical strategies, and assessment practices. Educational technology research and development, 72,
1893-1924. https://doi.otg/10.1007/s11423-024-10364-y

Roman-Gonzilez, M., Pérez-Gonzalez, J.C., & Jiménez-Fernandez, C. (2017). Which cognitive abilities
underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in
Human Bebavior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047

Rovshenov, A., & Sarsar, F (2023). Research trends in programming education: A systematic review of the
articles published between 2012-2020. Journal of Educational Technology and Online 1earning, 6(1), 48-81.
https://doi.otg/10.31681/jetol. 1201010

Sabuncuoglu, A., & Sezgin, T.M. (2022). Kart-on: An extensible paper programming strategy for
affordable early programming education. Proceedings of the ACM on Human-Computer Interaction, 6(EICS),
1-18. https://doi.org/10.1145/3534524

Selby, C., & Woollard, J. (2014). Computational thinking: The developing definition. University of Southampton.
Awailable at: http://eprints.soton.ac.uk/id/eprint/356481

Shute, V.J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational research
review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003

Talan, T. (2021). The Effect of Educational Robotic Applications on Academic Achievement: A
Meta-Analysis Study. International Journal of Technology in Education and Science, 5(4), 512-526. Available at:
https://files.etic.ed.gov/fulltext/E]1323488.pdf

Tsai, M. J., Liang, J. C., & Hsu, C. Y. (2021). The computational thinking scale for computer literacy
education. Journal of Educational Computing Research, 59(4), 579-602.
https://doi.org/10.1177/0735633120972356

Waite, J., Curzon, P., Marsh, W., & Sentance, S. (2020). Difficulties with design: The challenges of teaching
design in K-5 programming. Computers & edncation, 150, 103838.
https://doi.otg/10.1016/j.compedu.2020.103838

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. et al. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of science education and technology,
25, 127-147. https:/ /doi.org/10.1007/s10956-015-9581-5

Wing, .M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Yildiz, T., & Seferoglu, S.S. (2021). The effect of robotic programming on coding attitude and
computational thinking skills toward self-efficacy perception. Journal of Learning and Teaching in Digital
Age, 6(2), 101-116. Available at: https://files.eric.ed.gov/ fulltext/EJ1308356.pdf

Published by OmniaScience (www.omniascience.com)

Journal of Technology and Science Education, 2026 (www.jotse.org

Article’s contents are provided on an Attribution-Non Commercial 4.0 Creative commons International License.
Readers are allowed to copy, distribute and communicate article’s contents, provided the author’s and JOTSE
journal’s names are included. It must not be used for commercial purposes. To see the complete licence contents,

please visit https://creativecommons.org/licenses/by-nc/4.0/.

-108-

https://creativecommons.org/licenses/by-nc/4.0/
http://www.jotse.org/
http://www.omniascience.com/
https://files.eric.ed.gov/fulltext/EJ1308356.pdf
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1016/j.compedu.2020.103838
https://doi.org/10.1177/0735633120972356
https://files.eric.ed.gov/fulltext/EJ1323488.pdf
https://doi.org/10.1016/j.edurev.2017.09.003
http://eprints.soton.ac.uk/id/eprint/356481
https://doi.org/10.1145/3534524
https://doi.org/10.31681/jetol.1201010
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1007/s11423-024-10364-y

	EXPLORING THE RELATIONSHIP BETWEEN COMPUTATIONAL THINKING DIMENSIONS AND ACHIEVEMENT IN ROBOTICS PROGRAMMING AMONG COMPUTER EDUCATION STUDENTS
	1. Introduction
	2. Methodology
	3. Results
	4. Discussions
	5. Conclusions
	6. Recommendations
	7. Future Studies
	Declaration of Conflicting Interests
	Ethics Statement
	Funding
	References

