
Journal of Technology and Science Education
JOTSE, 2019 – 9(3): 357-367 – Online ISSN: 2013-6374 – Print ISSN: 2014-5349

https://doi.org/10.3926/jotse.638

UTILISING PAIR PROGRAMMING TO ENHANCE THE PERFORMANCE
OF SLOW-PACED STUDENTS ON INTRODUCTORY PROGRAMMING

Mewati Ayub , Oscar Karnalim , Risal Risal , Wenny Franciska Senjaya ,
Maresha Caroline Wijanto

Faculty of Information Technology, Maranatha Christian University (Indonesia)

mewati.ayub@it.maranatha.edu, oscar.karnalim@it.maranatha.edu, laurentius.risal@it.maranatha.edu,
wenny.fs@it.maranatha.edu, maresha.cw@it.maranatha.edu

Received January 2019
Accepted March 2019

Abstract

Due to its high failure rate, Introductory Programming has become a main concern. One of the main
issues is the incapability of slow-paced students to cope up with given programming materials. This paper
proposes a learning technique which utilises pair programming to help slow-paced students on
Introductory Programming; each slow-paced student is paired with a fast-paced student and the latter is
encouraged to teach the former as a part of grading system. An evaluation regarding that technique has
been conducted on three undergraduate classes from an Indonesian university for the second semester of
2018. According to the evaluation, the use of pair programming may help both slow-paced and fast-paced
students. Nevertheless, it may not significantly affect individual academic performance.

Keywords – Pair programming, Introductory programming, Slow-paced students, Quasi experiment,
Computing education.

To cite this article:

Ayub, M., Karnalim, O., Risal, R., Senjaya, W.F., Wijanto, M.C. (2019). Utilising pair programming to
enhance the performance of slow-paced students on introductory programming. Journal of Technology
and Science Education, 9(3), 357-367. https://doi.org/10.3926/jotse.638

1. Introduction
Introductory Programming has become a main concern in Computing education due to its high failure
rate (Vihavainen, Airaksinen & Watson, 2014). As a result, many teaching interventions have been
proposed such as encouraging collaboration (Lasserre & Szostak, 2011), bootstrapping the materials
(Mullins, Whitfield & Conlon, 2009), or contextualizing the materials with interactive media (Elvina,
Karnalim, Ayub & Wijanto, 2018; Karnalim & Ayub, 2018).

Pair programming is a collaboration technique where two programmers work together to solve a particular
task (Beck & Gamma, 2000). One of them acts as the driver –who has a control of the shared resources
(e.g., the computer, mouse, and keyboard)– whereas other acts as the navigator or observer, whose main
responsibilities are to provide advices and find errors. During the completion process, the programmers’
roles are typically switched after a certain period of time (Williams & Kessler, 2003). According to

-357-

mailto:mewati.ayub@it.maranatha.edu
https://doi.org/10.3926/jotse.638
https://doi.org/10.3926/jotse.638
mailto:maresha.cw@it.maranatha.edu
mailto:wenny.fs@it.maranatha.edu
mailto:laurentius.risal@it.maranatha.edu
mailto:oscar.karnalim@it.maranatha.edu
http://www.omniascience.com/
https://orcid.org/0000-0003-2584-4317
https://orcid.org/0000-0003-4930-6249
https://orcid.org/0000-0003-3295-7934
https://orcid.org/0000-0002-8070-3210
https://orcid.org/0000-0003-4131-7760

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

(Livermore, 2006), this technique –which is originally a part of extreme programming (Hannay, Dybå,
Arisholm & Sjøberg, 2009)– has been applied on 72% of industry organisations.

There are a lot of research about pair programming as a pedagogical tool (Salleh, Mendes & Grundy,
2011). Kavitha and Ahmed (2015) evaluated the impact of pair programming on master students. Their
findings suggest that pair programming may be useful for knowledge sharing.

Braught, Eby and, Wahls (2008) shows that pair programming improves paired students’ individual
programming skills. Further, it boosts the students’ confidence about their work. In addition, they are
more likely to succeed on the course.

Hannay et al. (2009) performed a meta-analysis on comparing pair programming with solo programming.
The study depicted that the former is faster than the latter when the task is simple. Further, the former
yields higher code quality when the task is complicated.

Saltz and Shamshurin (2017) applied pair programming on data science context. They found that pair
programming can also be used in that context where the driver is a software programmer and the observer
is a data science researcher.

Salleh, Mendes and Grundy (2014) investigated the impact of personality traits based on five empirical
studies with a total of 594 undergraduate students. They were focused on three of five-factor personality
framework: Conscientiousness, Neuroticism, and Openness. According to their study, only the last factor
affects significantly in terms of resulted academic performance.

Gómez, Aguileta, Aguilar, Ucan, Rosero and Cortes-Verdin, (2017) evaluated the impact of programming
workspace on pair programming. They found that, in the context of pair programming, the use of
programming workspace is better to be avoided.

Lewis and Shah (2015) showed that pair programming teams with incomparable members tend to
complete given task quickly due to the domination of a member. The finding is determined based on
audio records while the students do pair programming.

Villamor and Rodrigo (2018) conducted a dual eye tracking on paired novice students with
Cross-Recurrence Quantification Analysis (CRQA). They found that CRQA alone is not adequate to
predict the successful collaboration on pair programming.

In computing education, pair programming can become a collaboration-based teaching intervention; two
students collaboratively solve a particular programming assessment (Salleh et al., 2011). It may lead to
several benefits such as improving the quality of works (Williams & Kessler, 2000), increasing course
completion rate (Nagappan, Williams, Ferzli, Wiebe, Yang, Miller et al., 2003), and boosting up enjoyment
(Mendes, Al-Fakhri & Luxton-Reilly, 2005) & confidence level (Berenson, Slaten, Williams & Ho, 2004).

Pair programming can also be used to help slow-paced students by pairing each of them with a fast-paced
student and encouraging the latter to teach the former as a part of grading system. Even though it may
seem to be demanding for the fast-paced one, it actually benefits them. They will gain more knowledge
since, each time they teach, they re-learn the material. To our knowledge, no works have applied pair
programming in such manner.

This paper reports an experiment about applying pair programming to help slow-paced students. It was
conducted on three Introductory Programming classes for one semester (with 13 teaching weeks). In total,
fifty-seven computing undergraduates from an Indonesian university are involved.

2. Methodology
Applying pair programming with the aim to help slow-paced students can be conducted in fourfold. At
first, the students will be classified to two groups –fast-paced and slow-paced students– based on their
academic performance. The academic performance can be defined either from previously-taken courses

-358-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

or academic levels. All students are ranked based on their academic performance; the top-half of the list is
considered as the fast-paced students while the counterpart is considered as the slow-paced students.

Secondly, each Slow-paced Student (S-Stud) is paired with a Fast-paced Student (F-Stud). To balance the
proportion of each pair, F-Stud with top-K highest academic performance will be paired with a S-Stud
with top-K lowest performance. For instance, if a student is ranked as the 3 rd based on their academic
performance, they will be paired with a student whose rank is the 3rd from the bottom of the list. It is
important to note that the balancing mechanism assures that all pairs will have the same degree of
academic skill to complete given assessment.

Thirdly, resulted pairs are asked to complete an assessment as a group. Unique to this pair programming,
we let the pairs to use two computers each. S-Stud may need it to read given assessment problems, practise
to rewrite the solution, or observe some parts of the solution. During the assessment, if F-Stud acts as
the observer, S-Stud can learn through transferring F-Stud’ knowledge to the computer. Otherwise, S-Stud
can learn through observing how F-Stud solves the problem.

Fourthly, at the end of assessment, N S-Studs will be selected randomly from the pairs where N is defined
based on lecturer’ preference. Each S-Stud will be asked to explain some (or all) parts of their pair’s
solution. Their explanation will be scored, and that score will affect their final score and their fast-paced
student’s final score for that assessment. The worse their explanation is, the lower the final score will be.
This step is required to assure that the fast-paced student will try to teach their counterpart about the
solution.

In our case, the last step is aligned to our Introductory Programming course where each assessment has
five programming tasks. Four S-Studs will be selected randomly to explain the first four programming
tasks; one S-Stud is dedicated for one task. The last task is excluded since it is commonly the most difficult
task, dedicated for students with outstanding logic. Each selected S-Stud will be asked to explain their
pair’s solution of a task. If they cannot explain it comprehensively, the final score for that student and
their fast-paced student will be reduced up to 50%. To assure that the S-Stud does not memorise the
solution’s explanation, the lecturer usually asks one or two questions related to their code.

3. Evaluation

For evaluation, two main research questions are proposed. First, does pair programming enhance the
academic performance of slow-paced students? Second, does pair programming enhance the individual
academic performance of slow-paced students? These questions are referred as Q1 and Q2 respectively.

Three supplementary research questions related to pair programming are also proposed. First, does pair
programming enhance students’ academic performance in general? Second, does pair programming
enhance students’ individual academic performance in general? Third, does pair programming enhance the
academic performance of fast-paced students? These questions are referred as Q3, Q4, Q5 respectively.

3.1. Evaluation Scenario

To answer the aforementioned research questions, an evaluation scenario involving three Introductory
Programming classes (referred as A, B, and C respectively) were conducted on the second semester of
2018. It involves two learning techniques –pair and solo programming– which were conducted alternately
in most occasions. Solo programming refers to an activity completing a programming assessment
individually. It is commonly used in many Introductory Programming classes.

Table 1 shows the distribution of pair and solo programming for the Introductory Programming classes.
All of them were conducted on in-class laboratory sessions where internet and removable disk were not
accessible. Due to implementation issues, several adjacent sessions have the same learning technique and a
class has fewer number of sessions.

-359-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

Teaching Week Class A Class B Class C

1st week Solo Solo Solo

2nd week Solo Pair Pair

3rd week Pair Solo Solo

4th week Solo Pair Pair

5th week Pair Solo Solo

6th week Solo Pair Pair

7th week Pair Solo Solo

8th week Solo Pair Pair

9th week Pair Pair Pair

10th week Solo Solo Solo

11th week Solo Solo Solo

12th week Pair Pair Pair

13th week – Solo Solo

Table 1. Pair and Solo Programming Session Distribution

Teaching Week Teaching Materials

1st week Introduction to Programming Workspace

2nd week Sequential Actions

3rd week Branching

4th week Nested Branching

5th week Looping

6th week Nested Looping

7th week Review

Mid-Test –

8th week Void Function

9th week Function with a Return Value

10th week Array

11th week Array Combined with Function

12th week Matrix

13th week Searching and Sorting

Final Test –

Table 2. Teaching Materials

For each pair programming session, the students were divided to two groups: slow-paced and fast-paced
students. Both groups were based on the students’ scores on previous solo programming session. The
scores were sorted in descending order where students whose score is on the top-half would be
considered as fast-paced students and remaining students would be considered as the slow-paced ones.

All classes followed the same teaching roadmap (which materials can be seen on Table 2). The first seven
weeks were conducted prior mid-test while the remaining weeks were conducted upon mid-test.

Each week, the students should complete five programming tasks in 150 minutes with Python as its
programming language and PyCharm as its programming workspace. In terms of difficulty, the first two
tasks are the most basic ones. They were only about implementing given weekly material. The following
two tasks were the intermediate ones, which could be completed by applying a little logic on given
material. The last task was the most advanced one. It could only be completed with outstanding logic.

The statistics of each class can be seen on Table 3. Several students were out of consideration since their
course participation was less than 75%. We would argue that those students’ performance may obfuscate
the impact of pair programming as they did not participate in most teaching sessions.

-360-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

Feature Class A Class B Class C

The Number of Included Students 18 25 14

The Number of Excluded Students 5 2 2

The Total Number of Students 23 27 16

Table 3. The Statistics of Introductory Programming Classes

In this study, three research questions (Q1, Q2 and Q5) require only a particular group of students (either
slow-paced or fast-paced students). For that purpose, we define the slow-paced students as those whose
average assessment score (for all teaching weeks) is at bottom-half rank list while the fast-paced ones as
those whose score is at top-half rank list.

3.2. Q1: Does Pair Programming Enhance the Academic Performance of Slow-Paced Students?

To evaluate whether pair programming enhances the academic performance of slow-paced students, the
students’ score for each pair programming session will be compared with their score on previous solo
programming session. The detail of all comparisons can be seen on Table 4. There are seventeen
comparisons taken from three Introductory Programming classes.

Comparison
ID Class

Pair Programming
Week

Solo Programming
Week

CR101 A 3rd week 2nd week

CR102 A 5th week 4th week

CR103 A 7th week 6th week

CR104 A 9th week 8th week

CR105 A 12th week 10th week

CR106 B 2nd week 1st week

CR107 B 4th week 3rd week

CR108 B 6th week 5th week

CR109 B 8th week 7th week

CR110 B 9th week 7th week

CR111 B 12th week 11th week

CR112 C 2nd week 1st week

CR113 C 4th week 3rd week

CR114 C 6th week 5th week

CR115 C 8th week 7th week

CR116 C 9th week 7th week

CR117 C 12th week 11th week

Table 4. Comparisons for Evaluating the Impact of Pair Programming
on the Academic Performance of Slow-Paced Students

A pair programming session is considered effective to help slow-paced students if the students’ scores are
improved and the improvement is statistically significant. The significance is measured with t-test when
the scores are normally distributed (with mean as its determiner). Otherwise, Wilcoxon Signed Rank will
be used. All tests are based on 95% confidence level where p-value is considered significant if its score is
lower or equal to 0.05.

The result can be seen on Table 5. The bolded p-values are those which are statistically significant. Six
comparisons show statistically significant result where all of them correspond to positive improvement.
Hence, it can be stated that pair programming may enhance the academic performance of slow-paced
students. In average, by considering only statistically significant improvements, it boosts up by 20.34
points.

-361-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

Comparison ID
Pair

Programming
Mean Score

Solo
Programming
Mean Score

Significance
Test P-Value Improvement

CR101 87.56 98.44 Wilcoxon 0.813 -10.89

CR102 95.89 88.22 t-test 0.001 7.67

CR103 100.00 81.89 t-test 0.117 18.11

CR104 99.78 88.00 Wilcoxon 0.250 11.78

CR105 99.78 66.67 Wilcoxon 0.125 33.11

CR106 93.58 86.00 t-test 0.178 7.58

CR107 90.50 79.83 Wilcoxon 0.004 10.67

CR108 89.17 80.17 t-test 0.139 9.00

CR109 67.67 46.67 t-test 0.130 21.00

CR110 90.82 46.67 t-test 0.025 44.15

CR111 75.04 80.58 t-test 0.194 -5.54

CR112 95.00 93.00 t-test 0.733 2.00

CR113 96.14 90.14 t-test 0.018 6.00

CR114 89.71 90.14 t-test 0.901 -0.43

CR115 82.00 63.00 t-test 0.012 19.00

CR116 97.57 63.00 t-test 0.001 34.57

CR117 75.00 59.43 t-test 0.457 15.57

Table 5. The Improvements Gained by Utilising Pair Programming for Slow-Paced Students

3.3. Q2: Does Pair Programming Enhance the Individual Academic Performance of Slow-Paced
Students?

To evaluate whether pair programming enhances the individual academic performance of slow-paced
students, for each pair programming session, the students’ score on its previous solo programming session
will be compared with their score on the next solo programming session. The detail of all comparisons
can be seen on Table 6. Fourteen comparisons are considered.

A pair programming session is considered effective to enhance the individual performance of slow-paced
students if the students’ score upon pair programming is higher than their score prior pair programming
and the improvement is statistically significant. Similar with previous evaluation, the significance is
measured with t-test when the scores are normally distributed and Wilcoxon Signed Rank if the scores are
not normally distributed. Both tests are based on 95% confidence level.

The result can be seen on Table 7. The bolded p-values are those which are statistically significant. Six
comparisons yield statistically significant result. However, only two of them show positive improvement.
It may be caused by the increasing difficulty of teaching materials where the next solo programming
session was commonly conducted two weeks after the previous solo programming session. Another
possible cause is that several slow-paced students were not able to take advantages from their pair
programming session.

-362-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

Comparison
ID Class

Next Solo
Programming Week

Previous Solo
Programming Week

CR201 A 4th week 2nd week

CR202 A 6th Week 4th week

CR203 A 8th Week 6th week

CR204 A 10th Week 8th week

CR205 B 3rd Week 1st week

CR206 B 5th Week 3rd week

CR207 B 7th Week 5th week

CR208 B 10th Week 7th week

CR209 B 13th Week 11th week

CR210 C 3rd Week 1st week

CR211 C 5th Week 3rd week

CR212 C 7th Week 5th week

CR213 C 10th Week 7th week

CR214 C 13th Week 11th week

Table 6. Comparisons for Evaluating the Individual Impact of Pair Programming
on the Academic Performance of Slow-Paced Students

Comparison ID

Next Solo
Programming
Mean Score

Previous Solo
Programming
Mean Score

Significance
Test P-Value Improvement

CR201 88.22 98.44 t-test 0.001 -10.22

CR202 81.89 88.22 t-test 0.559 -6.33

CR203 88.00 81.89 Wilcoxon 0.047 6.11

CR204 66.67 88.00 Wilcoxon 0.125 -21.33

CR205 79.83 86.00 t-test 0.096 -6.17

CR206 80.17 79.83 t-test 0.970 0.33

CR207 46.67 80.17 t-test 0.013 -33.50

CR208 68.55 46.67 t-test 0.210 21.88

CR209 71.50 80.58 t-test 0.029 -9.08

CR210 90.14 93.00 t-test 0.297 -2.86

CR211 90.14 90.14 t-test 1.000 0.00

CR212 63.00 90.14 t-test 0.001 -27.14

CR213 79.29 63.00 t-test 0.023 16.29

CR214 48.71 59.43 t-test 0.526 -10.71

Table 7. The Individual Improvements Gained by Utilising Pair Programming for Slow-Paced Students

3.4. Q3: Does Pair Programming Enhance Students’ Academic Performance in General?

To evaluate whether pair programming enhances students’ academic performance in general, each pair
programming session’s score will be paired with their previous solo programming session’s. It results in 17
comparisons (listed on Table 4) with both slow-paced and fast-paced students are considered. The
effectiveness of pair programming is measured based on statistical significance test; t-test is used for
normal distribution. Otherwise, Wilcoxon Signed Rank will be used. All of them are calculated under 95%
confidence level.

The result can be seen on Table 8. The bolded p-values are those which are statistically significant. Eight
of nine statistically significant results are positive. It can be therefore stated that pair programming may
positively affect the students’ academic performance. By averaging only statistically significant results, it
boosts up by 11.61 points.

-363-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

Comparison
ID

Pair Programming
Mean Score

Solo Programming
Mean Score

Significance
Test P-Value Improvement

CR101 93.56 98.22 Wilcoxon 0.993 -4.67

CR102 97.30 93.44 t-test 0.016 3.86

CR103 100.00 87.94 Wilcoxon 0.001 12.06

CR104 99.78 93.33 Wilcoxon 0.188 6.44

CR105 99.78 83.33 Wilcoxon 0.188 16.44

CR106 93.35 88.65 Wilcoxon 0.062 4.70

CR107 94.52 86.26 Wilcoxon 0.002 8.26

CR108 89.96 84.39 t-test 0.107 5.57

CR109 72.74 63.43 t-test 0.221 9.30

CR110 93.23 63.43 Wilcoxon 0.002 29.79

CR111 77.80 86.13 t-test 0.002 -8.33

CR112 96.86 94.29 Wilcoxon 0.117 2.57

CR113 97.36 84.36 Wilcoxon 0.003 13.00

CR114 83.29 93.43 Wilcoxon 0.079 -10.14

CR115 82.57 71.07 t-test 0.015 11.50

CR116 96.71 71.07 t-test 0.001 25.64

CR117 82.21 73.50 Wilcoxon 0.030 8.71

Table 8. The Improvements Gained by Utilising Pair Programming in General

3.5. Q4: Does Pair Programming Enhance Students’ Individual Academic Performance in General?

To evaluate whether pair programming enhances students’ individual academic performance in general, for
each pair programming session, the students’ score on its previous and next solo programming session will be
compared to each other. It results in 14 comparisons displayed on Table 6 with both slow-paced and fast-paced
students are considered. Pair programming’s effectiveness is defined using statistical significance test –t-test for
normal distribution and Wilcoxon Signed Rank for unnormal distribution– with 95% confidence level.

The result can be seen on Table 9. The bolded p-values are those which are statistically significant. Only two
of six statistically significant results are positive. It may be caused by two possible reasons: the increasing
difficulty on the next solo programming session and the incapability to benefit from pair programming.

Comparison ID

Next Solo
Programming
Mean Score

Previous Solo
Programming
Mean Score

Significance
Test P-Value Improvement

CR201 93.44 98.22 t-test 0.009 -4.78

CR202 87.94 93.44 Wilcoxon 0.358 -5.50

CR203 93.33 87.94 Wilcoxon 0.006 5.39

CR204 83.33 93.33 Wilcoxon 0.063 -10.00

CR205 86.26 88.65 Wilcoxon 0.513 -2.39

CR206 84.39 86.26 Wilcoxon 0.235 -1.87

CR207 63.43 84.39 t-test 0.004 -20.96

CR208 73.36 63.43 t-test 0.335 9.93

CR209 77.52 86.13 t-test 0.001 -8.61

CR210 84.36 94.29 Wilcoxon 0.115 -9.93

CR211 93.43 84.36 Wilcoxon 0.144 9.07

CR212 71.07 93.43 t-test 0.001 -22.36

CR213 84.43 71.07 t-test 0.002 13.36

CR214 63.43 73.50 t-test 0.219 -10.07

Table 9. The Individual Improvements Gained by Utilising Pair Programming in General

-364-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

3.6. Q5: Does Pair Programming Enhance the Academic Performance of Fast-Paced Students?

To evaluate whether pair programming enhances the academic performance of fast-paced students, each
pair programming session’s score will be paired with their previous solo programming session’s. In total, it
leads to 17 comparisons (as displayed on Table 4) with only fast-paced students are considered. The
effectiveness of pair programming is defined using statistical significance test –t-test for normal
distribution and Wilcoxon Signed Rank for unnormal distribution– with 95% confidence level.

The result can be seen on Table 10. The bolded p-values are those which are statistically significant. Four
of five results are statistically significant and positive. It can be therefore stated that pair programming
may help fast-paced students to get higher score. In average, by considering only statistically significant
results, it increases these students’ score by 6.18 points.

Comparison ID
Pair

Programming
Mean Score

Solo
Programming
Mean Score

Significance
Test P-Value Improvement

CR101 99.56 98.00 Wilcoxon 0.125 1.56

CR102 98.71 98.67 Wilcoxon 0.250 0.04

CR103 100.00 94.00 Wilcoxon 0.004 6.00

CR104 99.78 98.67 Wilcoxon 0.500 1.11

CR105 99.78 100.00 Wilcoxon 1.000 -0.22

CR106 93.09 91.55 t-test 0.394 1.55

CR107 98.91 93.27 Wilcoxon 0.008 5.64

CR108 90.82 89.00 t-test 0.570 1.82

CR109 78.27 81.73 t-test 0.484 -3.45

CR110 95.64 81.73 t-test 0.010 13.91

CR111 80.82 92.18 t-test 0.001 -11.36

CR112 98.71 95.57 t-test 0.251 3.14

CR113 98.57 78.57 t-test 0.193 20.00

CR114 76.86 96.71 t-test 0.189 -19.86

CR115 83.14 79.14 t-test 0.465 4.00

CR116 95.86 79.14 t-test 0.012 16.71

CR117 89.43 87.57 t-test 0.627 1.86

Table 10. The Improvements Gained by Utilising Pair Programming for Fast-Paced Students

4. Conclusions
This paper proposes a learning technique that involves pair programming for helping slow-paced students
on Introductory Programming. The technique has been applied on three classes (with fifty-seven
computing undergraduates from an Indonesian university on board). According to our evaluation, the
technique may help both slow-paced students and fast-paced students, even though the impact is more
salient on the slow-paced ones. Despite its positive impact, pair programming may not affect the students’
individual academic performance due to the incapability to benefit from pair programming.

For future work, we plan to replicate this study on advanced courses (such as Object-Oriented
Programming course) and check whether these results are consistent. Further, we also plan to propose
another learning technique which are more focused on enhancing individual academic performance.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or
publication of this article.

-365-

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

Funding

The authors received a financial support for the publication of this article from Maranatha Christian
University, Indonesia.

References
Beck, K., & Gamma, E. (2000). Extreme programming eXplained : embrace change  . Addison-Wesley.

Berenson, S.B., Slaten, K.M., Williams, L., & Ho, C.W. (2004). Voices of women in a software engineering
course: reflections on collaboration. Journal on Educational Resources in Computing , 4(1), 3.
https://doi.org/10.1145/1060071.1060074

Braught, G., Eby, L.M., & Wahls, T. (2008). The effects of pair-programming on individual programming
skill. In Proceedings of the 39th SIGCSE technical symposium on Computer science education - SIGCSE ’08 (40,
200). New York, New York, USA: ACM Press. https://doi.org/10.1145/1352135.1352207

Elvina, E., Karnalim, O., Ayub, M., & Wijanto, M.C. (2018). Combining program visualization with
programming workspace to assist students for completing programming laboratory task. Journal of
Technology and Science Education, 8(4), 268. https://doi.org/10.3926/jotse.420

Gómez, O.S., Aguileta, A.A., Aguilar, R.A., Ucan, J.P., Rosero, R.H., & Cortes-Verdin, K. (2017). An
Empirical Study on the Impact of an IDE Tool Support in the Pair and Solo Programming. IEEE
Access, 5, 9175-9187. https://doi.org/10.1109/ACCESS.2017.2701339

Hannay, J.E., Dybå, T., Arisholm, E., & Sjøberg, D.I.K. (2009). The effectiveness of pair programming: A
meta-analysis. Information and Software Technology, 51(7), 1110-1122.
https://doi.org/10.1016/J.INFSOF.2009.02.001

Karnalim, O., & Ayub, M. (2018). A Quasi-Experimental Design to Evaluate the Use of PythonTutor on
Programming Laboratory Session. International Journal of Online Engineering (IJOE), 14(02), 155-164.

Kavitha, R.K., & Ahmed, M.S.I. (2015). Knowledge sharing through pair programming in learning
environments: An empirical study. Education and Information Technologies, 20(2), 319-333.
https://doi.org/10.1007/s10639-013-9285-5

Lasserre, P., & Szostak, C. (2011). Effects of team-based learning on a CS1 course. In Proceedings of the
16th annual joint conference on Innovation and technology in computer science education - ITiCSE’11 (133). New
York, New York, USA: ACM Press. https://doi.org/10.1145/1999747.1999787

Lewis, C.M., & Shah, N. (2015). How Equity and Inequity Can Emerge in Pair Programming. In Proceedings
of the eleventh annual International Conference on International Computing Education Research - ICER’15 (41-50).
New York, New York, USA: ACM Press. https://doi.org/10.1145/2787622.2787716

Livermore, J.A. (2006). What Elements of XP are being Adopted by Industry Practitioners? In Proceedings
of the IEEE SoutheastCon 2006 (149-152). IEEE. https://doi.org/10.1109/second.2006.1629340

Mendes, E., Al-Fakhri, L.B., & Luxton-Reilly, A. (2005). Investigating pair-programming in a 2nd-year
software development and design computer science course. ACM SIGCSE Bulletin, 37(3), 296-300.
https://doi.org/10.1145/1067445.1067526

Mullins, P., Whitfield, D., & Conlon, M. (2009). Using Alice 2.0 as a first language. Journal of Computing
Sciences in Colleges, 24(3), 136-143.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C. et al. (2003). Improving the CS1
experience with pair programming. ACM SIGCSE Bulletin, 35(1), 359-362.
https://doi.org/10.1145/611892.612006

-366-

https://doi.org/10.1145/611892.612006
https://doi.org/10.1145/1067445.1067526
https://doi.org/10.1109/second.2006.1629340
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/1999747.1999787
https://doi.org/10.1007/s10639-013-9285-5
https://doi.org/10.1016/J.INFSOF.2009.02.001
https://doi.org/10.1109/ACCESS.2017.2701339
https://doi.org/10.3926/jotse.420
https://doi.org/10.1145/1352135.1352207
https://doi.org/10.1145/1060071.1060074

Journal of Technology and Science Education – https://doi.org/10.3926/jotse.638

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical Studies of Pair Programming for CS/SE Teaching
in Higher Education: A Systematic Literature Review. IEEE Transactions on Software Engineering , 37(4),
509-525. https://doi.org/10.1109/TSE.2010.59

Salleh, N., Mendes, E., & Grundy, J. (2014). Investigating the effects of personality traits on pair
programming in a higher education setting through a family of experiments. Empirical Software
Engineering , 19(3), 714-752. https://doi.org/10.1007/s10664-012-9238-4

Saltz, J.S., & Shamshurin, I. (2017). Does pair programming work in a data science context? An initial case
study. In 2017 IEEE International Conference on Big Data (Big Data) (2348-2354). IEEE.
https://doi.org/10.1109/BigData.2017.8258189

Vihavainen, A., Airaksinen, J., & Watson, C. (2014). A systematic review of approaches for teaching
introductory programming and their influence on success. In Proceedings of the tenth annual conference on
International computing education research - ICER’14 (19-26). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2632320.2632349

Villamor, M., & Rodrigo, M.M. (2018). Predicting Successful Collaboration in a Pair Programming Eye
Tracking Experiment. In Adjunct Publication of the 26th Conference on User Modeling, Adaptation and
Personalization - UMAP’18 (263-268). New York, New York, USA: ACM Press.
https://doi.org/10.1145/3213586.3225234

Williams, L.A., & Kessler, R.R. (2000). The effects of “pair-pressure” and “pair-learning” on software
engineering education. In Thirteenth Conference on Software Engineering Education and Training (59-65). IEEE
Comput. Soc. https://doi.org/10.1109/CSEE.2000.827023

Williams, L., & Kessler, R.R. (2003). Pair programming illuminated. Addison-Wesley.

Published by OmniaScience (www.omniascience.com)

Journal of Technology and Science Education, 2019 (www.jotse.org)

Article’s contents are provided on an Attribution-Non Commercial 4.0 Creative commons International License.
Readers are allowed to copy, distribute and communicate article’s contents, provided the author’s and JOTSE

journal’s names are included. It must not be used for commercial purposes. To see the complete licence contents,
please visit https://creativecommons.org/licenses/by-nc/4.0/.

-367-

https://creativecommons.org/licenses/by-nc/4.0/
http://www.jotse.org/
http://www.omniascience.com/
https://doi.org/10.1109/CSEE.2000.827023
https://doi.org/10.1145/3213586.3225234
https://doi.org/10.1145/2632320.2632349
https://doi.org/10.1109/BigData.2017.8258189
https://doi.org/10.1007/s10664-012-9238-4
https://doi.org/10.1109/TSE.2010.59

	UTILISING PAIR PROGRAMMING TO ENHANCE THE PERFORMANCE OF SLOW-PACED STUDENTS ON INTRODUCTORY PROGRAMMING
	1. Introduction
	2. Methodology
	3. Evaluation
	4. Conclusions
	Declaration of Conflicting Interests
	Funding
	References

